Skip to main content
Log in

Forecasting the post-bifurcation dynamics of large-dimensional slow-oscillatory systems using critical slowing down and center space reduction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a method for forecasting Hopf bifurcations and the post-bifurcation dynamics in complex large-dimensional nonlinear systems. This method is based on the phenomenon of critical slowing down and the projection of the system dynamics on the center space. The approach does not require a model of the system because forecasting is based only on time-series measurements of the system response to perturbations (only) in the pre-bifurcation regime. Techniques are introduced to increase forecasting accuracy and to enable the use of data from recoveries after large perturbations. In contrast to other existing methods, the proposed technique solves the problem of insufficient data due to low-frequency system oscillations. The proposed approach is applied to a nonlinear aeroelastic system which is exposed to gust loads. Numerical simulations show that the method accurately predicts the bifurcation point, the bifurcation type, and the post-bifurcation dynamics in both supercritical and subcritical cases despite the fact that it uses only pre-bifurcation regime data and it does not use a model of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Lee, B.H.K., Jiang, L.Y., Wong, Y.S.: Flutter of an airfoil with a cubic restoring force. J. Fluid Struct. 13, 75–101 (1999)

    Article  Google Scholar 

  2. Kalmár-Nagy, T., Gábor, S., Francis, C.M.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26(2), 121–142 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jafri, F.A., Shukla, A., Thompson, D.F.: A numerical bifurcation study of friction effects in a slip-controlled torque converter clutch. Nonlinear Dyn. 50(3), 627–638 (2007)

    Article  MATH  Google Scholar 

  4. Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G.: Crossing the Hopf bifurcation in a live predator-prey system. Science 290(5495), 1358–1360 (2000)

    Article  Google Scholar 

  5. Mees, A., Chua, L.O.: The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems. IEEE Trans. Circuits Syst. 26(4), 235–254 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, C., Huang, L., Feng, J., Nai, M., He, Y.: Hopf bifurcation analysis for a two-neuron network with four delays. Chaos Solitons Fractals 34(3), 795–812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Scheffer, M., et al.: Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    Article  Google Scholar 

  8. Jeffries, C., Wiesenfeld, K.: Observation of noisy precursors of dynamical instabilities. Phys. Rev. A 31(2), 1077–1084 (1985)

    Article  Google Scholar 

  9. Guttal, V., Jayaprakash, C.: Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11(5), 450–460 (2008)

    Article  Google Scholar 

  10. Horsthemke, W.: Noise Induced Transitions. Springer, Berlin (1984)

    MATH  Google Scholar 

  11. Wiesenfeld, K.: Virtual Hopf phenomenon: a new precursor of period-doubling bifurcations. Phys. Rev. A 32(3), 1744 (1985)

    Article  MathSciNet  Google Scholar 

  12. Chisholm, R.A., Filotas, E.: Critical slowing down as an indicator of transitions in two-species models. J. Theor. Biol. 257(1), 142–149 (2009)

    Article  MathSciNet  Google Scholar 

  13. Van Nes, E.H., Scheffer, M.: Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169(6), 738–747 (2007)

    Article  Google Scholar 

  14. Carpenter, S.R., Brock, W.A.: Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9(3), 311–318 (2006)

    Article  Google Scholar 

  15. Lim, J., Epureanu, B.I.: Forecasting a class of bifurcations: theory and experiment. Phys. Rev. E 83(1), 016203 (2011)

    Article  MathSciNet  Google Scholar 

  16. Lim, J., Epureanu, B.I.: Forecasting bifurcation morphing: application to cantilever-based sensing. Nonlinear Dyn. 67(3), 2291–2298 (2012)

    Article  Google Scholar 

  17. Sieber, J., Thompson, J.M.T.: Nonlinear softening as a predictive precursor to climate tipping. Philo. Trans. R. Soc. A 370(1962), 1205–1227 (2012)

    Article  Google Scholar 

  18. Thompson, J.M.T., Sieber, J.: Climate tipping as a noisy bifurcation: a predictive technique. IMA J. Appl. Math. 76(1), 27–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thompson, J.M.T., Sieber, J.: Predicting climate tipping as a noisy bifurcation: a review. Int. J. Bifurc. Chaos 21(02), 399–423 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’Souza, K., Epureanu, B.I., Pascual, M.: Forecasting bifurcations from large perturbation recoveries in feedback ecosystems. PLoS One 10(9), e0137779 (2015)

    Article  Google Scholar 

  21. Ghadami, A., Epureanu, B.I.: Forecasting subcritical and supercritical flutter using gust responses. In: International Mechanical Engineering Congress & Exposition (IMECE 2015)

  22. Zhou, W., Chelidze, D.: Generalized eigenvalue decomposition in time domain modal parameter identification. J. Vib. Acoust. 130(1), 011001 (2008)

  23. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  24. Pappa, R.S.: Eigensystem realization algorithm user’s guide for VAX/VMS computers. NASA TM, 109066 (1994)

  25. Lenci, S., Consolini, L., Clementi, F.: On the experimental determination of dynamical properties of laminated glass. Ann. Solid Struct. Mech. 7(1–2), 27–43 (2015)

    Article  Google Scholar 

  26. Lee, B.H.K., Gong, L., Wong, Y.S.: Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity. J. Fluid Struct. 11(3), 225–246 (1997)

    Article  Google Scholar 

  27. Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Courier Corporation, North Chelmsford (2002)

    Google Scholar 

  28. Dessi, D., Mastroddi, F.: A nonlinear analysis of stability and gust response of aeroelastic systems. J. Fluid Struct. 24(3), 436–445 (2008)

    Article  Google Scholar 

  29. Marzocca, P., Librescu, L., Chiocchia, G.: Aeroelastic response of 2-D lifting surfaces to gust and arbitrary explosive loading signatures. Int. J. Impact Eng. 25(1), 41–65 (2001)

    Article  Google Scholar 

  30. Chow, J.H., Wu, F.F., Momoh, J.A.: Applied mathematics for restructured electric power systems. Springer, New York (2005)

    Book  Google Scholar 

  31. Waugh, I., Illingworth, S., Juniper, M.: Matrix-free continuation of limit cycles for bifurcation analysis of large thermoacoustic systems. J. Comput. Phys. 240, 225–247 (2013)

    Article  MathSciNet  Google Scholar 

  32. Jezequel, L., Lamarque, C.H.: Analysis of non-linear dynamical systems by the normal form theory. J. Sound Vib. 149(3), 429–459 (1991)

    Article  Google Scholar 

  33. Neild, S.A., Champneys, A.R., Wagg, D.J., Hill, T.L., Cammarano, A.: The use of normal forms for analysing nonlinear mechanical vibrations. Philo. Trans. R. Soc. A 373(2051), 20140404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nayfeh, A.H.: The Method of Normal Forms. Wiley, New York (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Science Foundation for the generous support of this work (Grant 1334908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan I. Epureanu.

Appendix

Appendix

Consider the following damped single degree of freedom nonlinear system. For clarity, the nonlinearity is assumed to be cubic as

$$\begin{aligned} {\ddot{x}}+c{\dot{x}}+\omega ^2 x=\gamma x^{3}. \end{aligned}$$
(24)

Writing this equation in state space form gives

$$\begin{aligned} \left\{ {{\begin{array}{l} {{\dot{x}}} \\ {{\ddot{x}}} \\ \end{array} }} \right\} =\left[ {{\begin{array}{ll} 0&{} 1 \\ {-c}&{} {-\omega ^{2}} \\ \end{array} }} \right] \left\{ {{\begin{array}{l} x \\ {{\dot{x}}} \\ \end{array} }} \right\} +\left\{ {{\begin{array}{l} 0 \\ {\gamma x^{3}} \\ \end{array} }} \right\} , \end{aligned}$$
(25)

where the states are chosen to be position and velocity.

Next, define the following transformation

$$\begin{aligned} \mathbf{x}=\Phi \mathbf{y}, \end{aligned}$$
(26)

where \(\mathbf{x}\) is the state variables vector(\(\mathbf{x}=[{\begin{array}{ll} x&{} {{\dot{x}}} \\ \end{array} }]^{T}), \mathbf{y}\) is vector containing the complex modal coordinates \(\mathbf{y}=[{\begin{array}{ll} {y_1 }&{} {y_2 } \\ \end{array} }]^{T}\), and \(\Phi \) is the matrix of complex mode shapes of the system. Matrix \(\Phi \) can be written as

$$\begin{aligned} \Phi =\left[ {{\begin{array}{ll} 1&{} 1 \\ {\lambda _1 }&{} {\bar{{\lambda }}_1 } \\ \end{array} }} \right] , \end{aligned}$$
(27)

where \(\lambda _1 =(-c-ir)/2\), and \(r=\sqrt{4\omega ^{2}-c^{2}}\).

Substituting (26) into (25), solving for \(y_1 \) and \(y_2 \), and defining \(a=\lambda _1 +i\omega \), one obtains the following expressions which can be used in the normal form theory

$$\begin{aligned}&{\dot{y}}_1 =-i\omega y_1 +a y_1 +\frac{\gamma }{\lambda _1 - \lambda _2 }(y_1 +y_2 )^{3}, \nonumber \\&{\dot{y}}_2 =i\omega y_2 +\bar{{a}}y_2 -\frac{\gamma }{\lambda _1 -\lambda _2 }(y_1 +y_2 )^{3},\nonumber \\&{\dot{a}}=0. \end{aligned}$$
(28)

Next, one may introduce the following nonlinear change of coordinates

$$\begin{aligned} y_1= & {} u_1 +\left( {\frac{-\gamma }{4\omega ^{2}}u_1^3 +\frac{3\gamma }{4\omega ^{2}}u_1 u_2^2 +\frac{\gamma }{8\omega ^{2}}u_2^3 } \right) ,\nonumber \\ y_2= & {} u_2 +\left( {\frac{-\gamma }{4\omega ^{2}}u_2^3 +\frac{3\gamma }{4\omega ^{2}}u_2 u_1^2 +\frac{\gamma }{8\omega ^{2}}u_1^3 } \right) . \end{aligned}$$
(29)

Using normal form theory, one can show that the system can be transformed using Eq. (29) into the following normal form up to \(3^{\mathrm{rd}}\) order

$$\begin{aligned} {\dot{u}}_1= & {} -i\omega u_1 +au_1 +\frac{3i\gamma }{2\omega }u_1^2 u_2 ,\nonumber \\ {\dot{u}}_2= & {} i\omega u_2 +\bar{{a}}u_2 -\frac{3i\gamma }{2\omega }u_2^2 u_1. \end{aligned}$$
(30)

The solution of above system of equations is in the following periodic form

$$\begin{aligned} u_1 =\bar{{u}}_2 =u_0 e^{-ct/2} e^{i{\tilde{\omega }} t}, \end{aligned}$$
(31)

where \(u_0 \) is a complex number, and \({\tilde{\omega }} \) is real number in the following form

$$\begin{aligned} {\tilde{\omega }} =\frac{-r}{2}+\frac{3\gamma }{2\omega }u_0 \bar{{u}}_0. \end{aligned}$$
(32)

Now, using Eqs. (31) and (29), one may observe that \(y_1 \) and \(y_2 \) are complex conjugates. Substituting Eq. (31) into Eq. (29) and assuming small nonlinearities, one can obtain an approximation for the modal coordinates in the following form

$$\begin{aligned} y_1= & {} \bar{{y}}_2 \approx \left( {w_1 (t)\cos ({\tilde{\omega }} t)-w_2 (t)\sin ({\tilde{\omega }} t)} \right) \nonumber \\&+\, i \left( {w_1 (t)\sin ({\tilde{\omega }} t)+w_2 (t)\cos ({\tilde{\omega }} t)} \right) , \end{aligned}$$
(33)

where \(w_1 (t)\) and \(w_2 (t)\) are functions of time containing exponentially decaying functions and the recovery rate of the system. Following the same procedure as in Eq. (33), one finds that both \(w_1 (t)\) and \(w_2 (t)\) have the same decay rate. The real and imaginary parts of the expression on the right-hand side of Eq. (33) correspond to \(q_1 \) and \(q_2 \) used in the text as real valued modal coordinates, i.e.

$$\begin{aligned} q_1= & {} w_1 (t)\cos ({\tilde{\omega }} t)-w_2 (t)\sin ({\tilde{\omega }} t),\nonumber \\ q_2= & {} w_1 (t)\sin ({\tilde{\omega }} t)+w_2 (t)\cos ({\tilde{\omega }} t). \end{aligned}$$
(34)

Note that \(q_1\) and \(q_2\) are in quadrature and form a regular spiral in the \(q_1 -q_2\) plane; the same form as expressed in Eq. (11). Note also that this conclusion came from the fact that the modal bases were chosen to be position and velocity.

The above procedure can be extended to higher-order systems and nonlinearities. More details can be found in refs. [32,33,34].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadami, A., Epureanu, B.I. Forecasting the post-bifurcation dynamics of large-dimensional slow-oscillatory systems using critical slowing down and center space reduction. Nonlinear Dyn 88, 415–431 (2017). https://doi.org/10.1007/s11071-016-3250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3250-y

Keywords

Navigation