Skip to main content
Log in

Residual symmetries and interaction solutions for the Whitham–Broer–Kaup equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlocal residual symmetry for the Whitham–Broer–Kaup (WBK) equation is derived by the truncated Painlevé analysis. The nonlocal residual symmetry is localized to the Lie point symmetry by introducing the auxiliary dependent variables. By using Lie’s first theorem, we obtain the finite transformation for the localized residual symmetry. Based on the consistent tanh expansion method (CTE), some exact interaction solutions among different nonlinear excitations are explicitly presented. Some special interaction solutions are investigated in both analytical and graphical ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Whitham, G.B.: Variational methods and applications to water wave. Proc. Roy. Soc. A 299, 6–25 (1967)

    Article  MATH  Google Scholar 

  2. Broer, L.J.: Approximate equations for long water waves. Appl. Sci. Res. 31, 377–395 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kaup, D.J.: A higher-order water equation and method for solving it. Progress Theor. Phys. 54, 396–408 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kupershmidt, B.A.: Mathematics of dispersive water waves. Commun. Math. Phys. 99, 51–73 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  6. Rafei, M., Daniali, H.: Application of the variational iteration method to the Whitham–Broer–Kaup equations. Comput. Math. Appl. 54, 1079–1085 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Haq, S., Ishaq, M.: Solution of coupled Whitham–Broer–Kaup equations using optimal homotopy asymptotic method. Ocean Eng. 84, 81–88 (2014)

    Article  Google Scholar 

  8. Xie, F., Yan, Z., Zhang, H.Q.: Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations. Phys. Lett. A 285, 76–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. EI-Sayed, S.M., Kaya, D.: Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations. Appl. Math. Comput. 167, 1339–1349 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Lou, S.Y., Hu, X.R., Chen, Y.: Nonlocal symmetries related to Bäklund transformation and their applications. J. Phys. A: Math. Theor. 45, 155209 (2012)

    Article  MATH  Google Scholar 

  11. Hu, X.R., Lou, S.Y., Chen, Y.: Explicit solutions from eigenfunction symmetry of the Korteweg-de Vriesequation. Phys. Rev. E 85, 056607 (2012)

    Article  Google Scholar 

  12. Cheng, X.P., Chen, C.L., Lou, S.Y.: Interactions among different types of nonlinear waves described by the Kadomtsev–Petviashvili equation. Wave Motion 51, 1298–1308 (2014)

    Article  MathSciNet  Google Scholar 

  13. Chen, J.C., Xin, X.P., Chen, Y.: Nonlocal symmetries of the Hirota-Satsuma coupled Korteweg-de Vries and their applications exact interaction solutions and integrable hierarchysystem. J. Math. Phys. 55, 053508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, J.C., Chen, Y.: Nonlocal symmetry constraints and exact interaction solutions of the (2+1) dimensional modified generalized long dispersive wave equation. J. Nonlinear Math. Phys. 21, 454–472 (2014)

    Article  MathSciNet  Google Scholar 

  15. Lou, S.Y.: Consistent Riccati expansion and solvability. Stud. Appl. Math. 134, 372–402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, D., Lou, S.Y., Yu, W.F.: Interactions between solitons and cnoidal periodic waves of the Boussinesq equation. Commun. Theor. Phys. 60, 387–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, C.L., Lou, S.Y.: CTE solvability, nonlocal symmetries and exact solutions of dispersive water wave system. Commun. Theor. Phys. 61, 545–550 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lou, S.Y., Cheng, X.P., Tang, X.Y.: Dressed dark solitons of the defocusing nonlinear Schröinger equation. Chin. Phys. Lett. 31, 070201 (2014)

    Article  Google Scholar 

  19. Chen, C.L., Lou, S.Y.: CTE solvability and exact solution to the Broer-Kaup system. Chin. Phys. Lett. 30, 110202 (2013)

    Article  Google Scholar 

  20. Gao, X.N., Lou, S.Y., Tang, X.Y.: Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation. J. High Energy Phys. 05, 029 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Foundation of Educational Committee of Zhejiang Province (Grant No. Y201432744), and the Zhejiang Province Natural Science Foundation of China (Grant Nos. LY14A010005 and LQ14A040001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxi Fei.

Appendix: The proof of Theorem 1

Appendix: The proof of Theorem 1

We write down the linearized form of the enlarged system (16)

$$\begin{aligned}&\sigma ^u_t+\sigma ^v_x+u\sigma ^u_x+\sigma ^uu_x+\beta \sigma ^u_{xx}=0, \end{aligned}$$
(38a)
$$\begin{aligned}&\sigma ^v_t+\sigma ^vu_x+v\sigma ^u_x+u\sigma ^v_x+\sigma ^uv_x\nonumber \\&\quad +\,\alpha \sigma ^u_{xxx}-\beta \sigma ^v_{xx}=0, \end{aligned}$$
(38b)
$$\begin{aligned}&\sigma ^u=\frac{(f_{i,t}+\sqrt{\alpha +\beta ^2}f_{i,xx})\sigma ^{f_i}_x}{f_{i,x}^2}, \end{aligned}$$
(38c)
$$\begin{aligned}&\sigma ^v=\frac{\alpha +\beta ^2-\beta \sqrt{\alpha +\beta ^2}}{\sqrt{\alpha +\beta ^2}}\sigma ^u_x, \end{aligned}$$
(38d)
$$\begin{aligned}&\sigma ^{f_i}_x=\sigma ^{g_i}, \end{aligned}$$
(38e)
$$\begin{aligned}&\sigma ^{g_i}_x=\sigma ^{h_i}, i=1, \ldots , n. \end{aligned}$$
(38f)

To prove this theorem, we first consider the special case, i.e., for any fixed \(k, c_k\ne 0\) while \(c_j=0 (j\ne k)\) in Eq. (17). In this case, we obtain the localized symmetry for \(u, v, f_k, g_k\) and \(h_k\) from Eqs. (1), (5) and (11)

$$\begin{aligned}&\sigma ^u=2\sqrt{\alpha +\beta ^2}c_kg_k, \end{aligned}$$
(39a)
$$\begin{aligned}&\sigma ^v=2(\alpha +\beta ^2-\beta \sqrt{\alpha +\beta ^2})c_kh_k, \end{aligned}$$
(39b)
$$\begin{aligned}&\sigma ^{f_k}=-c_kf_k^2, \end{aligned}$$
(39c)
$$\begin{aligned}&\sigma ^{g_k}=\frac{\alpha +\beta ^2-\beta \sqrt{\alpha +\beta ^2}}{\sqrt{\alpha +\beta ^2}}\sigma ^u_x, \end{aligned}$$
(39d)
$$\begin{aligned}&\sigma ^{h_k}=-2c_k(g_k^2+f_kh_k). \end{aligned}$$
(39e)

For \(j\ne k\), we eliminate u through Eq. (16c) by taking \(i = k\) and \(i = j\), respectively. Then we have

$$\begin{aligned} f_{j,xx}=-\frac{f_{j,t}}{\sqrt{\alpha +\beta ^2}}+\frac{f_{j,x}f_{k,t}}{\sqrt{\alpha +\beta ^2}f_{k,x}}+\frac{f_{j,x}f_{k,xx}}{f_{k,x}}. \end{aligned}$$
(40)

Substituting Eq. (39a) into Eq. (38c) with \(i = j\) and vanishing \(f_{j,xx}\) through Eq. (40), we have

$$\begin{aligned}&2c_k\sqrt{\alpha +\beta ^2}f_{j,x}f_{k,x}^2=-f_{k,x}\sigma ^{f_j}_t+f_{k,t}\sigma ^{f_j}_x\nonumber \\&\quad +\sqrt{\alpha +\beta ^2}\sigma ^{f_j}_xf_{k,xx}-\sqrt{\alpha +\beta ^2}f_{k,x}\sigma ^{f_j}_{xx}. \end{aligned}$$
(41)

It can be easily verified that equation (41) has the solution

$$\begin{aligned} \sigma ^f_j=-c_kf_jf_k. \end{aligned}$$
(42)

The symmetry for \(g_j\) and \(h_j\) can be easily obtained from Eqs. (38e) and (38f) with \(i = j\)

$$\begin{aligned}&\sigma ^g_j=-c_k(f_kg_j+f_jg_k),\nonumber \\&\quad \sigma ^h_j=-c_k(f_kh_j+g_jg_k+f_jh_k). \end{aligned}$$
(43)

After taking the linear combination of the above results for all \(k = 1, 2, \ldots , n\), Theorem 1 is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Ma, Z. & Cao, W. Residual symmetries and interaction solutions for the Whitham–Broer–Kaup equation . Nonlinear Dyn 88, 395–402 (2017). https://doi.org/10.1007/s11071-016-3248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3248-5

Keywords

Navigation