Skip to main content
Log in

A validated model for a pin-slot clearance joint

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The numerical modeling of joints with a certain amount of clearance and a subsequent validation of the model are important for accurate multibody simulations. For such validated modeling, not only the kinematic constraints, but also the contact models, are important. If a joint has no clearance, it is assumed to be ideal. However, in real applications, there is frequently some clearance in the joints. Adding clearance and kinematic conditions to a pin-slot joint significantly increases the number of kinematic and contact parameters. Consequently, the resulting kinematics and the contact forces can vary significantly with regard to the selection of those parameters. This research covers the development of a validated model for a pin-slot clearance joint. Different kinematic constraints and contact models are discussed. The presented model is an experimentally validated one for a pin-slot clearance joint that is commonly used in safety-critical applications like electrical circuit breakers. Special attention is given to the Hertz, Kelvin–Voigt, Johnson, and Lankarani–Nikravesh contact models. When comparing different contact models within numerical approaches and comparing the results with experimental data, significant differences in the results were observed. With a validated model of a pin-slot clearance joint, a physically consistent numerical simulation was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shabana, A.A.: Computational Dynamics, 3rd edn. Wiley (2009)

  2. Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming and Applications. CRC Press (2007)

  3. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall (1988)

  4. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Library (1927)

  5. Flores, P., Ambrosio, J., Pimenta, C.C.J., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints, vol. 34 of Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2008)

  6. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pfeiffer, F.: Multibody systems with unilateral constraints. J. Appl. Math. Mech. 65(4), 665–670 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  9. Pfeiffer, F.: Unilateral problems of dynamics. Arch. Appl. Mech. 69(8), 503–527 (1999)

    Article  MATH  Google Scholar 

  10. Slavič, J., Boltežar, M.: Simulating multibody dynamics with rough contact surfaces and run-in wear. Nonlinear Dyn. 45(3–4), 353–365 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. nonlinear Dyn. 8(2), 021012 (2013)

    Article  Google Scholar 

  12. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pereira, C., Ambrosio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  14. Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015)

    Article  MATH  Google Scholar 

  15. Gummer, A., Sauer, B.: Modeling planar slider-crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31, 127–145 (2012)

  16. Erkaya, S., Doğan, S., Ulus, Ş.: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015)

    Article  Google Scholar 

  17. Xu, L.: A general method for impact dynamic analysis of a planar multi-body system with a rolling ball bearing joint. Nonlinear Dyn. 78(2), 857–879 (2014)

    Article  MathSciNet  Google Scholar 

  18. Qi, Z., Wang, G., Zhang, Z.: Contact analysis of deep groove ball bearings in multibody systems. Multibody Syst. Dyn. 33, 115–141 (2015)

  19. Xu, L., Yang, Y.: Modeling a non-ideal rolling ball bearing joint with localized defects in planar multibody systems. Multibody Syst. Dyn. 35, 409–426 (2015)

  20. Zhuang, F., Wang, Q.: Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints. Multibody Syst. Dyn. 29(4), 403–423 (2013)

    MathSciNet  Google Scholar 

  21. Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multibody Syst. Dyn. 38, 1–23 (2016)

  22. Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn. 69(4), 2117–2133 (2012)

    Article  MathSciNet  Google Scholar 

  23. Hertz, H.: Ueber die Beruehrung fester elastischer Koerper. Journal fuer die reine und angewandte Mathematik 91, 156–171 (1881)

    Google Scholar 

  24. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  25. Ambrosio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22(4), 341–365 (2009)

    Article  MATH  Google Scholar 

  26. Lankarani, H.M.: Canonical equations of motion and estimation of parameters in the analysis of impact problems. Department of Aerospace and Mechanical Engineering (1988)

  27. Barikloo, H., Ahmadi, E.: Dynamic properties of golden delicious and red delicious apple under normal contact force models. J. Texture Stud. 44(6), 409–417 (2013)

    Article  Google Scholar 

  28. Baglioni, S., Cianetti, F., Braccesi, C., De Micheli, D.M.: Multibody modelling of N DOF robot arm assigned to milling manufacturing. Dynamic analysis and position errors evaluation. J. Mech. Sci. Technol. 30(1), 405–420 (2016)

    Article  Google Scholar 

  29. Olsson, H.: Control systems with friction. Department of Automatic Control, Lund Institute of Technology, vol. 1045(October), p. 172 (1996)

  30. Koshy, C.S., Flores, P., Lankarani, H.M.: Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches. Nonlinear Dyn. 73(1–2), 325–338 (2013)

    Article  Google Scholar 

  31. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28(4), 369–393 (2012)

    Article  MathSciNet  Google Scholar 

  32. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Dynamic modeling and analysis of wear in spatial hard-on-hard couple hip replacements using multibody systems methodologies. Nonlinear Dyn. 82(1–2), 1039–1058 (2015)

    Article  MathSciNet  Google Scholar 

  33. Xiang, W., Yan, S., Wu, J.: A comprehensive method for joint wear prediction in planar mechanical systems with clearances considering complex contact conditions. Sci. China Technol. Sci. 58(1), 86–96 (2015)

    Article  Google Scholar 

  34. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004)

    Article  Google Scholar 

  35. Shabana, A.A., Tobaa, M., Sugiyama, H., Zaazaa, K.E.: On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn. 40(2), 169–193 (2005)

    Article  MATH  Google Scholar 

  36. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ambrósio, J.: Impact of rigid and flexible multibody systems: deformation description and contact models. In: Virtual Nonlinear Multibody Systems, vol. II, pp. 57–81. NATO, Advanced Study Institute (2003)

  38. Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2011)

    Article  Google Scholar 

  39. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks Cole (2011)

  40. Flores, P., Ambrosio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004)

    Article  Google Scholar 

  41. Goldsmith, W.: Impact: The Theory and Physical Behaviour of Colliding Solids. Edward Arnold Ltd., London (1960)

  42. Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (1995)

    Google Scholar 

  43. Pereira, C.M., Ramalho, A.L., Ambrosio, J.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011)

    Article  Google Scholar 

  44. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2(1), 1–24 (1998)

    Article  MATH  Google Scholar 

  45. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268(5–6), 643–652 (2010)

    Article  Google Scholar 

  46. Chunmei, J., Yang, Q., Ling, F., Ling, Z.: The non-linear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)

    Article  Google Scholar 

  47. Coulomb, C.A.: Theories of simple machines. Mem. Math. Phys. Acad. Sci. 10, 161–331 (1785)

    Google Scholar 

  48. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications, p. 402. McGraw-Hill Book Co., New York (1985)

  49. Smith, S.W.: Digital Signal Processing, 2nd edn. California Technical Publishing, San Diego (1999)

    Google Scholar 

  50. Slavič, J., Boltežar, M.: Non-linearity and non-smoothness in multi-body dynamics: application to woodpecker toy. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 220(3), 285–296 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial financial support of the Slovenian Research Agency (research core funding No. P2-0263)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Slavič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrinjar, L., Slavič, J. & Boltežar, M. A validated model for a pin-slot clearance joint. Nonlinear Dyn 88, 131–143 (2017). https://doi.org/10.1007/s11071-016-3234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3234-y

Keywords

Navigation