Skip to main content
Log in

Vector dark and bright soliton wave solutions and collisions for spin-1 Bose–Einstein condensate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We hereby work on the generalized three-coupled Gross–Pitaevskii equations by means of the Darboux transformation and Hirota’s method. By modulating the external trap potential, atom gain or loss, and coupling coefficients, we can obtain several nonautonomous matter-wave solitons including dark–dark–dark and bright–bright–bright shapes. Propagation and interaction behaviors of the nonautonomous vector solitons are analyzed through the one- and two-soliton solutions. Then, the managements and dynamic behaviors of these solutions are investigated analytically, such as the snaking behaviors, parabolic behaviors and interaction behaviors. Interactions between the linear-type, parabolic-type and periodic-type dark and bright two solitons are elastic. The results could be of interest in such diverse fields as Bose–Einstein condensates and nonlinear fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stamper-Kurn, D.M., Andrews, M.R., Chikkatur, A.P., Inouye, S., Miesner, H.J., Stenger, J., Ketterle, W.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)

    Article  Google Scholar 

  2. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  3. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature (London) 450, 1054–1057 (2007)

    Article  Google Scholar 

  4. Fedichev, P.O., Kagan, Y., Shlyapnikov, G.V., Walraven, T.M.: Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett. 77, 2913–2916 (1996)

    Article  Google Scholar 

  5. Theis, M., Thalhammer, G., Winkler, K., Hellwig, M., Ruff, G., Grimm, R., Hecker Denschlag, J.: Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004)

    Article  Google Scholar 

  6. Papoular, D.J., Shlyapnikov, G.V., Dalibard, J.: Microwave-induced Fano–Feshbach resonances. Phys. Rev. A 81, 041603(R) (2010)

    Article  Google Scholar 

  7. Ho, T.L.: Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998)

    Article  Google Scholar 

  8. Ohmi, T., Machida, K.: Bose–Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn. 67, 1822–1825 (1998)

    Article  Google Scholar 

  9. Zhang, W., Yi, S., You, L.: Mean field ground state of a spin-1 condensate in a magnetic field. N. J. Phys. 5, 77 (2003)

    Article  Google Scholar 

  10. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  11. Liang, Z.X., Zhang, Z.D., Liu, W.M.: Dynamics of a bright soliton in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys. Rev. Lett. 94, 050402 (2005)

    Article  Google Scholar 

  12. Belmonte-Beitia, J., Perez-Garcia, V.M., Vekskerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  13. Belmonte-Beitia, J., Gareia, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  14. Friedrich, H., Jacoby, G., Meister, C.G.: Quantum reflection by Casimir–van der Waals potential tails. Phys. Rev. A 65, 032902 (2002)

    Article  Google Scholar 

  15. Yan, Z.Y., Hang, C.: Analytical three-dimensional bright solitons and soliton pairs in Bose–Einstein condensates with time-space modulation. Phys. Rev. A 80, 063626 (2009)

    Article  Google Scholar 

  16. Yu, F.J.: From the solutions to construct the Schrödinger-like equation with source term and its numerical simulations. Nonlinear Dyn. 82, 249–257 (2015)

    Article  Google Scholar 

  17. Zhou, Q., Zhu, Q.P., Yu, H., Xiong, X.M.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80(1–2), 983–987 (2015)

    Article  MathSciNet  Google Scholar 

  18. Zhou, Q., Yao, D., Liu, X., Ding, S., Zhang, Y., Chen, F.: Exact solitons in three-dimensional weakly nonlocal nonlinear time-modulated parabolic law media. Opt. Laser Technol. 51, 32–35 (2013)

    Article  Google Scholar 

  19. Zhou, Q.: Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect. Optik 125(13), 3142–3144 (2014)

    Article  Google Scholar 

  20. Zhou, Q., Yao, D., Chen, F., Li, W.: Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60(10), 854–859 (2013)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Q., Zhu, Q., Bhrawy, A.H.: Optical solitons with spatially-dependent coefficients by Lie symmetry. Optoelectron. Adv. Mater. Rapid Commun. 8(7–8), 800–803 (2014)

    Google Scholar 

  22. Zhao, L.C., Liu, J.: Localized nonlinear waves in a two-mode nonlinear fiber. J. Opt. Soc. Am. B 29, 3119–3127 (2012)

    Article  Google Scholar 

  23. Wang, D.S., Zhang, D., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Forest, M.G., McLaughlin, D.W., Muraki, D.J., Wright, O.C.: Nonfocusing instabilities in coupled, integrable nonlinear Schrödinger pdes. J. Nonlinear Sci. 10, 291–331 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wright, O.C., Forest, M.G.: On the Baklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system. Phys. D 141, 104 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheppard, A.P., Kivshar, Y.S.: Polarized dark solitons in isotropic Kerr media. Phys. Rev. E 55, 4773 (1997)

    Article  MathSciNet  Google Scholar 

  27. Ohta, Y., Wang, D.S., Yang, J.: General N-dark–dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127, 345 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Forest, M.G., Wright, O.C.: An integrable model for stable: unstable wave coupling phenomena. Phys. D 178, 173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Carretero-Gonzalez, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose–Einstein condensates. Nonlinearity 21, R139–R202 (2008)

    Article  MATH  Google Scholar 

  30. Yan, Z.Y., Konotop, V.V.: Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. Phys. Rev. E 80, 036607 (2009)

    Article  Google Scholar 

  31. Yu, F.J.: Nonautonomous rogue waves and ’catch’ dynamics for the combined Hirota–LPD equation with variable coefficients. Commun. Nonlinear. Sci. Numer. Simul. 34, 142–153 (2016)

    Article  MathSciNet  Google Scholar 

  32. Yu, F.J.: Matter rogue waves and management by external potentials for coupled Gross–Pitaevskii equation. Nonlinear Dyn. 80, 685–699 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, Y.J., Gao, Y.T., Zuo, D.W., Sun, Y.H., Feng, Y.J., Xue, Long: Nonautonomous matter waves in a spin-1 Bose–Einstein condensate. Phys. Rev. E 89, 062915 (2014)

    Article  Google Scholar 

  34. Rajendran, S., Muruganandam, P., Lakshmanan, M.: Interaction of dark–bright solitons in two-component Bose–Einstein condensates. J. Phys. B 42, 145307 (2009)

    Article  Google Scholar 

  35. Rajendran, S., Lakshmanan, M., Muruganandam, P.: Matter wave switching in Bose–Einstein condensates via intensity redistribution soliton interactions. J. Math. Phys. 52, 023515 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kumar, V.R., Radha, R., Wadati, M.: Collision of bright vector solitons in two-component Bose–Einstein condensates. Phys. Lett. A 374, 3685 (2010)

    Article  MATH  Google Scholar 

  37. Rajendran, S., Muruganandam, P., Lakshmanan, M.: Bright and dark solitons in a quasi-1D Bose–Einstein condensates modelled by 1D Gross–Pitaevskii equation with time-dependent parameters. Phys. D 239, 366 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  39. Janis, J., Banks, M., Bigelow, N.P.: rf-induced Sisyphus cooling in a magnetic trap. Phys. Rev. A 71, 013422 (2005)

    Article  Google Scholar 

  40. Qin, Z.Y., Mu, G.: Matter rogue waves in an \(\text{ F }=1\) spinor Bose–Einstein condensate. Phys. Rev. E 86, 036601 (2012)

    Article  Google Scholar 

  41. Vijayajayanthi, M., Kanna, T., Lakshmanan, M.: Bright–dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations. Phys. Rev. A 77, 013820 (2008)

    Article  Google Scholar 

  42. Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Article  Google Scholar 

  43. He, J.S., Li, Y.S.: Designable integrability of the variable-coefficient nonlinear Schrödinger equations. Stud. Appl. Math. 126, 1–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Cataliotti, F.S., et al.: Josephson junction arrays with Bose-Einstein condensates. Science 293, 843 (2001)

  45. Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose-Einstein condensates. Phys. Rev. Lett. 86, 2353 (2001)

  46. Meza, Arroyo: L.E., Souza Dutra, A., Hott, M.B.: Wide vector solitons in systems with time-and space-modulated nonlinearities. Phys. Rev. E 88, 053202 (2013)

  47. Ling, L.M., Zhao, L.C., Guo, B.L.: Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations. Nonlinearity 28, 3243–3261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kanna, T., Sakkaravarthi, K.: Multicomponent coherently coupled and incoherently coupled solitons and their collisions. J. Phys. A Math. Theor. 44, 285211 (2011)

  49. Park, Q.H., Shin, H.J.: Painleve analysis of the coupled nonlinear Schrödinger equation for polarized optical waves in an isotropic medium. Phys. Rev. E 59, 2373–2379 (1999)

  50. Zhang, H.Q., Xu, T., Li, J., Tian, B.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Project supported by the National Natural Science Foundation of China (Grant No. 11301349) and Natural Science Foundation of Liaoning Province, China (Grant No. 201602678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Yu.

Appendices

Appendix 1

$$\begin{aligned} Q_{11}= & {} 2\,{\frac{{\mathrm{e}^{i \left( X_{{1}}-\overline{X_{{1}}} \right) }}+ \delta _{{11}}}{\mu _{{1}}-\overline{\mu _{{1}}}}},\quad Q_{12}= 2\,{\frac{{\mathrm{e}^{i \left( X_{{1}}-\overline{X_{{2}}} \right) }}+ \delta _{{21}}}{\lambda _{{1}}+\mu _{{1}}-\lambda _{{2}}- \overline{\mu _{{2}}}}},\\ Q_{21}= & {} 2\,{\frac{{\mathrm{e}^{i \left( X_{{2}}-\overline{X_{{1}}} \right) }}+ \delta _{{12}}}{\lambda _{{2}}+\mu _{{2}}-\lambda _{{1}}- \overline{\mu _{{1}}}}} ,\quad Q_{22}= 2\,{\frac{{\mathrm{e}^{i \left( X_{{2}}-\overline{X_{{2}}} \right) }}+ \delta _{{22}}}{\mu _{{2}}-\overline{\mu _{{2}}}}},\\ \beta _{km}= & {} \frac{1}{\left( \lambda _{{k}}+a_{{m}}+\mu _{{k}} \right) },\quad k=1,2,\\ X_1= & {} \mu _{{1}}\eta + \left( \lambda _{{1}}\mu _{{1}}+1/2\,{\mu _{{1}}}^{2}-1/2 \,{\lambda _{{1}}}^{2} \right) \tau ,\\ \bar{X}_1= & {} \overline{\mu _{{1}}}\eta + \left( \lambda _{{1}}\overline{\mu _{{1}}}+1/2 \, \left( \overline{\mu _{{1}}} \right) ^{2}-1/2\,{\lambda _{{1}}}^{2} \right) \tau ,\\ X_2= & {} \mu _{{2}}\eta + \left( \lambda _{{2}}\mu _{{2}}+1/2\,{\mu _{{2}}}^{2}-1/2 \,{\lambda _{{2}}}^{2} \right) \tau ,\\ \bar{X}_2= & {} \overline{\mu _{{2}}}\eta + \left( \lambda _{{2}}\overline{\mu _{{2}}}+1/2 \, \left( \overline{\mu _{{2}}} \right) ^{2}-1/2\,{\lambda _{{2}}}^{2} \right) \tau ,\\ \delta _{11}= & {} e^{2\alpha _1 \mu _{1l}},\delta _{22}=e^{2\alpha _2 \mu _{2l}},\delta _{12}=0,\delta _{21}=0. \end{aligned}$$

Appendix 2

$$\begin{aligned} \eta _l= & {} k_l(\eta +ik_l \tau ),(l=1,2),\\ e^{R_u}= & {} \frac{\kappa _{u}}{k_u+k_u^*},\\ e^{\delta _0}= & {} \frac{\kappa _{12}}{k_1+k_2^*},\\ e^{\delta _0^*}= & {} \frac{\kappa _{21}}{k_2+k_1^*},\\ e^{\delta _{uv}^{(j)}}= & {} \frac{\gamma \alpha _v ^{(j)*}\sum _{l=1}^3(\alpha _u^{(l)})^2}{2(k_u+k_v^*)^2},\\ e^{\delta _{u}^{(j)}}= & {} \frac{\gamma \alpha _u^{(j)*}\sum _{l=1}^3 \left( \alpha _1^{(l)}\alpha _2^{(l)}\right) +(k_1-k_2)(\alpha _1^{(j)}\kappa _{2u} -\alpha _2^{(j)}\kappa _{1u}}{(k_1+k_u^*)(k_2+k_u^*)},\\ e^{\epsilon _{uv}}= & {} \frac{\gamma ^2\sum _{j=1}^3\left( \alpha _u^{(j)}\right) ^2 \sum _{j=1}^3\left( \alpha _v^{(j)*}\right) ^2}{4(k_u+k_v^*)^4},\\ e^{\tau _{u}}= & {} \frac{\gamma ^2\sum _{j=1}^3\left( \alpha _1^{(j)*}\alpha _2^{(j)*}\right) \sum _{j=1}^3\left( \alpha _u^{(j)}\right) ^2}{2(k_u+k_1^*)^2(k_u+k_2^*)^2},\\ e^{\mu _{uv}^{(j)}}= & {} \frac{\gamma ^2(k_1-k_2)^2 \alpha _{3-u}^{(j)}\sum _{l=1}^3\left( \alpha _u^{(l)}\right) ^2 \sum _{l=1}^3\left( \alpha _v^{(l)*}\right) ^2}{4(k_u+k_v^*)^4(k_{3-u}+k_v^*)^2},\\ e^{\theta _{uv}}= & {} \frac{\gamma ^3(k_1-k_2)^2 (k_1^*-k_2^*)^2}{4 \tilde{D}(k_u+k_v^*)^2 } \sum _{j=1}^3\left( \alpha _u^{(j)}\right) ^2 \sum _{j=1}^3\left( \alpha _v^{(j)*}\right) ^2 \\&\times \sum _{j=1}^3\left( \alpha _{3-u}^{(j)*} \alpha _{3-v}^{(j)*}\right) ,\\ e^{\phi _{u}^{(j)}}= & {} \frac{\gamma ^3(k_1-k_2)^4 (k_1^*-k_2^*)^2 }{8 \tilde{D}(k_1+k_u^*)^2 (k_2+k_u^*)^2 } \alpha _{3-u}^{(j)*} \sum _{l=1}^3\left( \alpha _1^{(l)}\right) ^2\\&\times \sum _{l=1}^3\left( \alpha _2^{(l)*}\right) ^2 \sum _{l=1}^3\left( \alpha _{u}^{(l)*}\right) ^2,\\ e^{R_3}= & {} \frac{ |k_1-k_2|^2 (\kappa _{11}\kappa _{22}-\kappa _{12}\kappa _{21}) +\gamma ^2 |\sum _{j=1}^3\left( \alpha _1^{(j)}\alpha _2^{(j)}\right) |^2}{ (k_1+k_1^*)(k_2+k_2^*)|k_1+k_2^*|^2 },\\ e^{R_{4}}= & {} \frac{\gamma ^4(k_1-k_2)^8 }{16 \tilde{D}^2 } \sum _{j=1}^3\left( \alpha _1^{(j)}\right) ^2 \sum _{j=1}^3\left( \alpha _1^{(j)*}\right) ^2\\&\times \sum _{j=1}^3( \alpha _{2}^{(j)})^2\sum _{j=1}^3( \alpha _{2}^{(j)*})^2,\\ e^{ \mu _u^{(j)}}= & {} \frac{\gamma ^2(k_1-k_2)^2 }{2 \tilde{D} } \sum _{j=1}^3\left( \alpha _u^{(l)}\right) ^2 \left( \left[ (k_{3-u}+k_1^*)^2\right. \right. \\&\left. +\,(k_{2}^*-k_1^*)(k_{3-u}+k_2^*)\right] \alpha _{3-u}^{(j)}\alpha _{1}^{(j)*}\alpha _{2}^{(j)*}\\&+\,(k_{3-u}^*+k_1^*)(k_{1}^*-k_2^*)\alpha _{1}^{(j)*} \sum _{l=1,l\ne j}^3\left( \alpha _{3-u}^{(l)}\alpha _{2}^{(l)*}\right) \\&-(k_{1}^*-k_2^*)(k_{3-u}^*+k_2^*)\alpha _{2}^{(j)*} \sum _{l=1,l\ne j}^3\left( \alpha _{3-u}^{(l)}\alpha _{1}^{(l)*}\right) \\&+\,(k_{3-u}+k_1^*)(k_{3-u}+k_2^*)\alpha _{3-u}^{(j)*} \left. \sum _{l=1,l\ne j}^3\left( \alpha _{1}^{(l)}\alpha _{2}^{(l)*}\right) \right) , \end{aligned}$$

with

$$\begin{aligned}&\tilde{D}=(k_1+k_1^*)^2 (k_1^*+k_2)^2(k_1+k_2^*)^2(k_2+k_2^*)^2,\\&\kappa _{uv}=\frac{\gamma \sum _{j=1}^3\left( \alpha _u^{(j)} \alpha _v^{(j)*}\right) }{(k_u+k_v^*)},\\&\qquad \qquad u,v=1,2, \quad j,l=1,2,3. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Li, L. Vector dark and bright soliton wave solutions and collisions for spin-1 Bose–Einstein condensate. Nonlinear Dyn 87, 2697–2713 (2017). https://doi.org/10.1007/s11071-016-3221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3221-3

Keywords

Navigation