Skip to main content
Log in

Bilinear Bäcklund transformation, soliton and periodic wave solutions for a \(\varvec{(3 + 1)}\)-dimensional variable-coefficient generalized shallow water wave equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a \((3 + 1)\)-dimensional variable-coefficient generalized shallow water wave equation. Bilinear forms, Bäcklund transformation and Lax pair are obtained based on the Bell polynomials and symbolic computation. One-, two- and three-soliton solutions are derived via the Hirota method. One-periodic wave solutions are obtained via the Hirota–Riemann method. Discussions indicate that the one-periodic wave solutions approach to the one-soliton solutions when \(\varTheta \rightarrow 0\). Propagation and interaction of the soliton solutions have been discussed graphically. We find that not the soliton amplitudes, but the velocities are related to the variable coefficients \(\delta _{1}(t)\) and \(\delta _{2}(t)\). Phase shifts of the two-soliton solutions are the only differences to the superposition of two one-soliton solutions, so the amplitudes of the two-soliton solutions are equal to the sum of the corresponding two one-soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980)

    Book  Google Scholar 

  2. Chai, J., Tian, B., Xie, X.Y.: Conservation laws, bilinear Bäcklund transformations and solitons for a nonautonomous nonlinear Schrödinger equation with external potentials. Commun. Nonlinear Sci. Numer. Simul. 39, 472–480 (2016)

    Article  MathSciNet  Google Scholar 

  3. Lan, Z.Z., Gao, Y.T., Yang, J.W.: Bäcklund transformation and Lax pair for a (2 + 1)-dimensional Broer-Kaup-Kupershmidt system in the shallow water of uniform depth. Commun. Nonlinear Sci. Numer. Simul. 44, 360–372 (2017)

    Article  MathSciNet  Google Scholar 

  4. Li, H.M., Tian, B., Xie, X.Y.: Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Commun. Nonlinear Dyn. 86, 369–380 (2016)

    Article  Google Scholar 

  5. Wang, L., Zhang, J.H., Wang, Z.Q.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 6448–56 (2012)

    Google Scholar 

  6. Wang, L., Zhu, Y.J., Qi, F.H.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 142 (2015)

    MathSciNet  Google Scholar 

  7. Guo, R., Zhao, H.H., Wang, Y.: A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions. Nonlinear Dyn. 83, 2475–2484 (2016)

    Article  MATH  Google Scholar 

  8. Zhao, H.H., Zhao, X.J., Hao, H.Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426C2435 (2013)

    Google Scholar 

  10. Hirota, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations And Inverse Scattering Transform. Cambridge University Press, London (1990)

    Google Scholar 

  11. El-Sabbagh, M.F., Ahmad, A.T.: Nonclassical symmetries for nonlinear partial differential equations via compatibility. Commun. Theor. Phys. 56, 611–616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai, C.J., Zhao, H., Xu, H.Y.: New traveling wave solutions for a class of nonlinear evolution equations. Int. J. Mod. Phys. B 25, 319–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Savescu, M., Bi-Irawy, A.H., Hilal, E.M.: Optical solitons in birefringent fibers with four-wave mixing for Kerr law nonlinearity. Optoelectron. Adv. Mat. 9, 10–13 (2015)

    Google Scholar 

  14. Mirzazadeh, M., Eslami, M., Zerrad, E.: Optical solitons in nonlinear directional couplers by sineCcosine function method and Bernoullis equation approach. Nonlinear Dyn. 81, 1–17 (2015)

    Article  Google Scholar 

  15. Louaked, M., Hanich, L.: TVD scheme for the shallow water equations. J. Hydraul. Res 36, 363–378 (1998)

    Article  MATH  Google Scholar 

  16. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. I. Math. Sci. 19, 943–1001 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Y., Liu, R.: Some new nonlinear wave solutions for two (3 + 1)-dimensional equations. Appl. Math. Comput. 260, 397–411 (2015)

    MathSciNet  Google Scholar 

  18. Zeng, Z.F., Liu, J.G., Nie, B.: Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3 + 1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 86, 667–675 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tian, B., Gao, Y.T.: Beyond travelling waves: a new algorithm for solving nonlinear evolution equations. Comput. Phys. Commun. 95, 139–142 (1996)

    Article  MATH  Google Scholar 

  20. Zayed, E.M.E.: Traveling wave solutions for higher dimensional nonlinear evolution equations using the \((\frac{G^{\prime }}{G})\)-expansion method. J. Appl. Math. Inform. 28, 383–395 (2010)

    MATH  Google Scholar 

  21. Tang, Y.N., Ma, W.X., Xu, W.: Grammian and Pfaffian solutions as well as Pfaffianization for a (3 + 1)-dimensional generalized shallow water equation. Chin. Phys. B 21, 85–91 (2012)

    Google Scholar 

  22. Wu, J., Xing, X., Geng, X.: Generalized bilinear differential operators application in a (3 + 1)-dimensional generalized shallow water equation. Adv. Math. Phys. 4, 1–9 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Tang, Y.N., Ma, W.X., Xu, W.: Wronskian determinant solutions of the (3 + 1)-dimensional Jimbo-Miwa equation. Appl. Math. Comput. 21, 8722–8730 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Darvishi, M.T., Najafi, M.: Some complexiton type solutions of the (3 + 1)-dimensional Jimbo-Miwa equation. Int. J. Comput. Math. Sci. 1, 25–27 (2012)

    MathSciNet  Google Scholar 

  25. Tang, X.Y., Liang, Z.F.: Variable separation solutions for the (3 + 1)-dimensional Jimbo-Miwa equation. Phys. Lett. A 6, 398–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Turgut, Öziş, Aslan, İsmail: Exact and explicit solutions to the (3 + 1)-dimensional Jimbo-Miwa equation via the exp-function method. Phys. Lett. A 47, 7011–7015 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Ma, S.H., Fang, J.P., Zheng, C.L.: New exact solutions for the (3 + 1)-dimensional Jimbo-Miwa system. Chaos Soliton Fract. 3, 1352–1355 (2009)

    Article  Google Scholar 

  28. Li, Z., Dai, Z.: Abundant new exact solutions for the (3 + 1)-dimensional Jimbo-Miwa equation. J. Math. Anal. Appl. 2, 587–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong, W., Oh, K.S.: New solitonic solutions to a (3 + 1)-dimensional Jimbo-Miwa equation. Comput. Math. Appl. 5, 29–31 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lambert, F., Loris, I., Springael, J.: On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A 28, 5325–5334 (2007)

  32. Fan, E., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (2+ 1)-dimensional breaking soliton equation. J. Math. Phys. 2, 023504–10 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hirota, R.: Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys. 7, 805–809 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hirota, R., Ohta, Y.: Hierarchies of coupled soliton equations I. J. Phys. Soc. 3, 798–809 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tian, S., Zhang, H.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 2, 585–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1 + 1)-dimensional and (2 + 1)-dimensional Ito equation. Chaos Soliton Fract. 47, 27–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, F.S., Ma, P.L.: On the quasi-periodic wave solutions and asymptotic analysis to a(3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 8, 245–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editors, reviewers and members of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, QM., Gao, YT., Jia, SL. et al. Bilinear Bäcklund transformation, soliton and periodic wave solutions for a \(\varvec{(3 + 1)}\)-dimensional variable-coefficient generalized shallow water wave equation. Nonlinear Dyn 87, 2529–2540 (2017). https://doi.org/10.1007/s11071-016-3209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3209-z

Keywords

Navigation