Skip to main content

Advertisement

Log in

Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper explores a clearance-type nonlinear energy sink (NES) for increasing electrical energy harvested from non-stationary mechanical waves, such as those encountered during impact and intermittent events. The key idea is to trap energy in the NES such that it can be harvested over a time period longer than that afforded by the passing disturbance itself. Analytical, computational, and experimental techniques are employed to optimize the energy sink, explore qualitative behavior (to include bifurcations), and verify enhanced performance. Unlike traditionally studied single-DOF NESs, both subdomains of the NES (i.e., on either side of the clearance) contain displaceable degrees of freedom, increasing the complexity of the analytical solution approach. However, closed-form solutions are found which quantify the relationship between the impact amplitude and the energy produced, parameterized by system properties such as the harvester effective resistance, the clearance gap, and the domain mass and stiffness. Bifurcation diagrams and trends therein provide insight into the number and state of impact events at the NES as excitation amplitude increases. Moreover, a closed-form Poincaré map is derived which maps one NES impact location to the next, greatly simplifying the analysis while providing an important tool for follow-on bifurcation studies. Finally, a series of representative experiments are carried out to realize the benefits of using clearance-type nonlinearities to trap wave energy and increase the net harvested energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Harb, A.: Energy harvesting: state-of-the-art. Renew. Energy 36(10), 2641–2654 (2011)

    Article  Google Scholar 

  2. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36(3), 197–206 (2004)

    Article  Google Scholar 

  3. Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 52(1), 8–11 (1996)

    Article  Google Scholar 

  4. Umeda, M., Nakamura, K., Ueha, S.: Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Jpn. J. Appl. Phys. 35(5S), 3267 (1996)

    Article  Google Scholar 

  5. Goldfarb, M., Jones, L.D.: On the efficiency of electric power generation with piezoelectric ceramic. J. Dyn. Syst. Meas. Control 121(3), 566–571 (1999)

    Article  Google Scholar 

  6. Horowitz, S.B., Sheplak, M., Cattafesta III, L.N., Nishida, T.: A MEMS acoustic energy harvester. J. Micromech. Microeng. 16(9), S174 (2006)

    Article  Google Scholar 

  7. Kim, S.-H., Ji, C.-H., Galle, P., Herrault, F., Wu, X., Lee, J.-H., Choi, C.-A., Allen, M.G.: An electromagnetic energy scavenger from direct airflow. J. Micromech. Microeng. 19(9), 094010 (2009)

    Article  Google Scholar 

  8. Gonella, S., To, A.C., Liu, W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57(3), 621–633 (2009)

    Article  MATH  Google Scholar 

  9. Wu, L.-Y., Chen, L.-W., Liu, C.-M.: Acoustic energy harvesting using resonant cavity of a sonic crystal. Appl. Phys. Lett. 95(1), 013506 (2009)

    Article  Google Scholar 

  10. Rupp, C.J., Dunn, M.L., Maute, K.: Switchable phononic wave filtering, guiding, harvesting, and actuating in polarization-patterned piezoelectric solids. Appl. Phys. Lett. 96(11), 111902 (2010)

    Article  Google Scholar 

  11. Carrara, M., Cacan, M.R., Leamy, M.J., Ruzzene, M., Erturk, A.: Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror. Appl. Phys. Lett. 100(20), 204105 (2012)

    Article  Google Scholar 

  12. Carrara, M., Cacan, M.R., Toussaint, J., Leamy, M.J., Ruzzene, M., Erturk, A.: Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting. Smart Mater. Struct. 22(6), 065004 (2013)

    Article  Google Scholar 

  13. Carrara, M., Kulpe, J.A, Leadenham, S.M, Leamy, M.J, Erturk, A.: Optimal piezoelectric energy harvesting using elastoacoustic mirrors by frequency-wavenumber domain investigation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, p. 905705. International Society for Optics and Photonics (2014)

  14. Carrara, M., Kulpe, J.A., Leadenham, S., Leamy, M.J., Erturk, A.: Fourier transform-based design of a patterned piezoelectric energy harvester integrated with an elastoacoustic mirror. Appl. Phys. Lett. 106(1), 013907 (2015)

    Article  Google Scholar 

  15. Sun, H.-X., Zhang, S.-Y.: Shui, X.-j.: A tunable acoustic diode made by a metal plate with periodical structure. Appl. Phys. Lett. 100(10), 103507 (2012)

    Article  Google Scholar 

  16. Maznev, A.A., Every, A.G., Wright, O.B.: Reciprocity in reflection and transmission: what is a phonon diode? Wave Motion 50(4), 776–784 (2013)

    Article  Google Scholar 

  17. Schmotz, M., Maier, J., Scheer, E., Leiderer, P.: A thermal diode using phonon rectification. New J. Phys. 13(11), 113027 (2011)

    Article  Google Scholar 

  18. Liang, B., Guo, X.S., Tu, J., Zhang, D., Cheng, J.C.: An acoustic rectifier. Nat. Mater. 9(12), 989–992 (2010)

    Article  Google Scholar 

  19. Liang, B., Yuan, B.: Cheng, J.-c.: Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103(10), 104301 (2009)

    Article  Google Scholar 

  20. Li, X.-F., Ni, X., Feng, L., Lu, M.-H., He, C., Chen, Y.-F.: Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106(8), 084301 (2011)

    Article  Google Scholar 

  21. Zhu, S., Dreyer, T., Liebler, M., Riedlinger, R., Preminger, G.M., Zhong, P.: Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Ultrasound Med. Biol. 30(5), 675–682 (2004)

    Article  Google Scholar 

  22. Sigalas, M., Kushwaha, M.S., Economou, E.N., Kafesaki, M., Psarobas, I.E., Steurer, W.: Classical vibrational modes in phononic lattices: theory and experiment. Z. Krist. (Cryst. Mater.) 220(9–10), 765–809 (2005)

    Google Scholar 

  23. Vakakis, A.F.: Shock isolation through the use of nonlinear energy sinks. J. Vib. Control 9(1–2), 79–93 (2003)

    Article  MATH  Google Scholar 

  24. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  25. Vakakis, A.F., Manevitch, L.I., Gendelman, O., Bergman, L.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264(3), 559–577 (2003)

    Article  Google Scholar 

  26. Mohammad, A., Al-Shudeifat, M.A., Wierschem, N., Quinn, D.D., Vakakis, A.F., Bergman, L.A., Spencer, B.F.: Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation. Int. J. Non-linear Mech. 52, 96–109 (2013)

    Article  Google Scholar 

  27. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46(6), 1371–1394 (2008)

    Article  Google Scholar 

  28. Gendelman, O.V., Gourdon, E., Lamarque, C.-H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4), 651–662 (2006)

    Article  Google Scholar 

  29. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3), 916–939 (2009)

    Article  Google Scholar 

  30. Luongo, A., Zulli, D.: Aeroelastic instability analysis of nes-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control 20(5), 1985–1998 (2014)

    Article  Google Scholar 

  31. Zulli, D., Luongo, A.: Control of primary and subharmonic resonances of a duffing oscillator via non-linear energy sink. Int. J. Non-linear Mech. 80, 170–182 (2016)

    Article  Google Scholar 

  32. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221(1–2), 175–200 (2011)

    Article  MATH  Google Scholar 

  33. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315(3), 732–745 (2008)

    Article  Google Scholar 

  34. Lin, H., Antsaklis, P.J.: Hybrid dynamical systems: an introduction to control and verification. Found Trends Syst Control 1(1), 1–172 (2014)

    Article  Google Scholar 

  35. Di Bernardo, M., Kowalczyk, P., Nordmark, A.: Bifurcations of dynamical systems with sliding: derivation of normal-form mappings. Phys. D Nonlinear Phenom. 170(3), 175–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luo, A.C.J.: Discontinuous Dynamical Systems on Time-Varying Domains. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  37. DeCarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE 88(7), 1069–1082 (2000)

    Article  Google Scholar 

  38. Leine, R.I., Van Campen, D.H.: Bifurcation phenomena in non-smooth dynamical systems. Eur. J. Mech. A Solids 25(4), 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84(2), 173–189 (1982)

  40. Wood, L.A., Byrne, K.P.: Analysis of a random repeated impact process. J. Sound Vib. 78(3), 329–345 (1981)

    Article  MATH  Google Scholar 

  41. Luo, G.W., Lv, X.H., Shi, Q.: Vibro-impact Dynamics of a Two-Degree-of Freedom Periodically-Forced System with a Clearance: Diversity and Parameter Matching of Periodic-Impact Motions, vol. 65. Elsevier, Amsterdam (2014)

    Google Scholar 

  42. Brogliato, B.: Impacts in Mechanical Systems: Analysis and Modelling. Springer Science & Business Media, New York (2000)

  43. Wriggers, P., Panagiotopoulos, P.D.: New developments in contact problems number, 384. Springer, Berlin (1999)

    MATH  Google Scholar 

  44. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances part 1: formation of dynamic model. J. Eng. Ind. 93(1), 305–309 (1971)

    Article  Google Scholar 

  45. Meriam, J.L., Kraige, L.G.: Engineering Mechanics: Dynamics. Wiley, New York (2012)

    MATH  Google Scholar 

  46. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Book  Google Scholar 

  47. Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer Science & Business Media, London (2008)

Download references

Acknowledgements

The authors would to acknowledge support of this research by the National Science Foundation under Grant No. 1333978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Leamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darabi, A., Leamy, M.J. Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn 87, 2127–2146 (2017). https://doi.org/10.1007/s11071-016-3177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3177-3

Keywords

Navigation