Skip to main content

Advertisement

Log in

A high-efficient nonlinear energy sink with a one-way energy converter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear energy sink (NES) has been presented in the past two decades. Although it has very broad applications, some inherent limitation of the traditional NES is inevitable, such as relatively high energy threshold. This paper proposes a new NES with one-way energy converter (EC), which is realized by an asymmetric bi-linear element. The Runge–Kutta method is used to solve the governing equations of the traditional NES; the EC-NES and the reference configuration and the target energy transfer (TET) efficiency are compared. Numerical evidence confirms that the bi-linear spring plays a leading role in enhancing the one-way energy absorbing. Obvious vibration suppression of the EC-NES due to the low-to-high frequency conversion is observed, which is much more efficient than the others. In addition, the energy pumping is investigated for unveiling vibration dissipation in EC-NES. These results pave a new road for designing the high-efficient vibration isolator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang, X.Z., Li, Y.X., Zhang, Y.M., Zhang, X.F.: A new direct second-order reliability analysis method. Appl. Math. Model. 55, 68–80 (2018). https://doi.org/10.1016/j.apm.2017.10.026

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, C.Y., Xu, M.T., He, G.K., Zhang, H.Z., Liu, Z.D., He, D., Zhang, Y.M.: Time-dependent nonlinear dynamic model for linear guideway with crowning. Tribol. Int. 151, 106413 (2020). https://doi.org/10.1016/j.triboint.2020.106413

    Article  Google Scholar 

  3. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., Closkey, R.M.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001)

    Article  MathSciNet  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42–48 (2001)

    Article  MathSciNet  Google Scholar 

  5. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  6. Lu, Z., Wang, Z.X., Zhou, Y., Lu, X.L.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  7. Jiang, X.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 33, 87–102 (2003). https://doi.org/10.1023/A:1025599211712

    Article  MATH  Google Scholar 

  8. Boroson, E.R., Missoum, S., Mattei, P.O., Vergez, C.: Optimization under uncertainty of parallel nonlinear energy sinks. J. Sound Vib. 394, 451–464 (2017). https://doi.org/10.1016/j.jsv.2016.12.043

    Article  Google Scholar 

  9. Starosvetsky, Y., Gendelman, O.V.: Bifurcations of attractors in forced system with nonlinear energy sink: the effect of mass asymmetry. Nonlinear Dyn. 59, 711–731 (2009). https://doi.org/10.1007/s11071-009-9572-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Nonlinear Mech. 47, 1073–1080 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.09.013

    Article  Google Scholar 

  11. Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014). https://doi.org/10.1007/s11071-014-1329-x

    Article  Google Scholar 

  12. Zhang, Y.W., Lu, Y.N., Chen, L.Q.: Energy harvesting via nonlinear energy sink for whole-spacecraft. Sci. China. Technol. Sci. 62, 1483–1491 (2019). https://doi.org/10.1007/s11431-018-9468-8

    Article  Google Scholar 

  13. Herrera, C.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity. J. Sound Vib. 388, 298–314 (2017). https://doi.org/10.1016/j.jsv.2016.10.037

    Article  Google Scholar 

  14. Karličić, D., Cajić, M., Paunović, S., Adhikari, S.: Periodic response of a nonlinear axially moving beam with a nonlinear energy sink and piezoelectric attachment. Int. J. Mech. Sci. 195, 106230 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106230

    Article  Google Scholar 

  15. Zhang, Y.W., Yuan, B., Fang, B., Chen, L.Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2016). https://doi.org/10.1007/s11071-016-3107-4

    Article  Google Scholar 

  16. Tan, D.D., Lu, Z.Q., Gu, D.H., Ding, H., Chen, L.Q.: A ring vibration isolator enhanced by a nonlinear energy sink. J. Sound Vib. 508, 116201 (2021)

    Article  Google Scholar 

  17. Malookani, R.A., van Horssen, W.T.: On the asymptotic approximation of the solution of an equation for a non-constant axially moving string. J. Sound Vib. 367, 203–218 (2016). https://doi.org/10.1016/j.jsv.2021.116201

    Article  Google Scholar 

  18. Yang, T.Z., Liu, T., Tang, Y., Hou, S., Lv, X.F.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97, 1937–1944 (2018). https://doi.org/10.1007/s11071-018-4581-7

    Article  Google Scholar 

  19. Sun, Y.H., Zhang, Y.W., Ding, H., Chen, L.Q.: Nonlinear energy sink for a flywheel system vibration reduction. J. Sound Vib. 429, 305–324 (2018). https://doi.org/10.1016/j.jsv.2018.05.025

    Article  Google Scholar 

  20. Tian, W., Li, Y.M., Li, P., Yang, Z.C., Zhao, T.: Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. J. Sound Vib. 462, 114942 (2019). https://doi.org/10.1016/j.jsv.2019.114942

    Article  Google Scholar 

  21. Bergeot, B., Bellizzi, S.: Steady-state regimes prediction of a multi-degree-of-freedom unstable dynamical system coupled to a set of nonlinear energy sinks. Mech. Syst. Signal. Process 131, 728–750 (2019). https://doi.org/10.1016/j.ymssp.2019.05.045

    Article  Google Scholar 

  22. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  23. Li, T., Seguy, S., Berlioz, A.: Dynamics of cubic and vibro-impact nonlinear energy sink: analytical, numerical, and experimental analysis. J. Vib. Acoust. 138, 031010 (2016). https://doi.org/10.1115/1.4032725

    Article  Google Scholar 

  24. Li, X.L., Liu, K.F., Xiong, L.Y., Tang, L.H.: Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. J. Sound Vib. 503, 116104 (2021). https://doi.org/10.1016/j.jsv.2021.116104

    Article  Google Scholar 

  25. Haris, A., Motato, E., Theodossiades, S., Rahnejat, H., Kelly, P., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: A study on torsional vibration attenuation in automotive drivetrains using absorbers with smooth and non-smooth nonlinearities. Appl. Math. Model. 46, 674–690 (2017). https://doi.org/10.1016/j.apm.2016.09.030

    Article  MathSciNet  MATH  Google Scholar 

  26. Yao, H.L., Cao, Y.B., Wang, Y.W., Wen, B.C.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019). https://doi.org/10.1016/j.jsv.2019.114971

    Article  Google Scholar 

  27. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324, 916–939 (2009). https://doi.org/10.1016/j.jsv.2009.02.052

    Article  Google Scholar 

  28. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. J. Vib. Acoust. 140, 021009 (2018). https://doi.org/10.1016/j.jsv.2019.114971

    Article  Google Scholar 

  29. Li, X., Zhang, Y.W., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech. 38, 1019–1030 (2017). https://doi.org/10.1007/s10483-017-2220-6

    Article  MathSciNet  Google Scholar 

  30. Kremer, D., Liu, K.F.: A nonlinear energy sink with an energy harvester: harmonically forced responses. J. Sound Vib. 410, 287–302 (2017). https://doi.org/10.1016/j.jsv.2017.08.042

    Article  Google Scholar 

  31. Romeo, F., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Dynamics of a linear oscillator coupled to a bistable light attachment: numerical study. J. Comput. Nonlinear Dyn. 10, 001007 (2015). https://doi.org/10.1115/1.4027224

    Article  Google Scholar 

  32. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  33. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  34. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal. Pr 129, 449–454 (2019). https://doi.org/10.1016/j.ymssp.2019.04.047

    Article  Google Scholar 

  35. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal. Pr 125, 52–64 (2019). https://doi.org/10.1016/j.ymssp.2018.08.026

    Article  Google Scholar 

  36. Wang, J.J., Zhang, C., Li, H.B., Liu, Z.B.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. 237, 112184 (2021). https://doi.org/10.1016/j.engstruct.2021.112184

    Article  Google Scholar 

  37. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011). https://doi.org/10.1016/j.jsv.2010.08.014

    Article  Google Scholar 

  38. Yang, T.Z., Hou, S., Qin, Z.H., Ding, Q., Chen, L.Q.: A dynamic reconfigurable nonlinear energy sink. J. Sound Vib. 494, 115629 (2020). https://doi.org/10.1016/j.jsv.2020.115629

    Article  Google Scholar 

  39. Al-Shudeifat, M.A., Wierschem, N.E., Bergman, L.A., Vakakis, A.F.: Numerical and experimental investigations of a rotating nonlinear energy sink. Mecc. 52, 763–779 (2016). https://doi.org/10.1007/s11012-016-0422-2

    Article  Google Scholar 

  40. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Nonlinear Mech. 117, 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  41. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018). https://doi.org/10.1016/j.jsv.2018.08.058

    Article  Google Scholar 

  42. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017). https://doi.org/10.1016/j.jsv.2016.12.019

    Article  Google Scholar 

  43. Li, X., Zhang, Y.W., Ding, H., Chen, L.Q.: Dynamics and evaluation of a nonlinear energy sink integrated by a piezoelectric energy harvester under a harmonic excitation. J. Vib. Control. 25, 851–867 (2018). https://doi.org/10.1177/1077546318802456

    Article  MathSciNet  Google Scholar 

  44. Raj, P.R., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.053

    Article  Google Scholar 

  45. Tan, T., Wang, Z.M., Zhang, L., Liao, W.H., Yan, Z.M.: Piezoelectric autoparametric vibration energy harvesting with chaos control feature. Mech. Syst. Signal. Process 161, 107989 (2021). https://doi.org/10.1016/j.ymssp.2021.107989

    Article  Google Scholar 

  46. Fu, C.Y., Wang, B.H., Zhao, T.F., Chen, C.Q.: High efficiency and broadband acoustic diodes. Appl. Phys. Lett. 112, 051902 (2018). https://doi.org/10.1063/1.5020698

    Article  Google Scholar 

  47. Lu, Z.C., Norris, N.: Andrew: unilateral and nonreciprocal transmission through bi-linear spring systems. Extreme Mech. Lett. 42, 101087 (2021). https://doi.org/10.1016/j.eml.2020.101087

    Article  Google Scholar 

  48. Lu, Z.C., Norris, N.: Andrew: Non-reciprocal wave transmission in a bi-linear spring-mass system. J. Vib. Acoust. 142, 021006 (2020). https://doi.org/10.1115/1.4045501

    Article  Google Scholar 

  49. Ma, Y.L., Yu, S.D., Wang, D.L.: Modeling dynamic behavior of MDOF systems with multiple bi-linear springs. J. Mech. Sci. Technol. 32, 4057–4069 (2018). https://doi.org/10.1007/s12206-018-0805-5

    Article  Google Scholar 

  50. Ibrahim, A., Towfighian, S., Younis, M.: Dynamics of transition regime in bistable vibration energy harversters. J. Vib. Acoust. 139, 051008 (2017). https://doi.org/10.1115/1.4036503

    Article  Google Scholar 

  51. Geng, X.F., Ding, H., Mao, X.Y., Chen, L.Q.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal. Process 156, 107625 (2021). https://doi.org/10.1016/j.ymssp.2021.107625

    Article  Google Scholar 

  52. AL-Shudeifat, M.A., Vakakis, A.F., Bergman, L.A.: Shock mitigation by means of low- to high-frequency nonlinear targeted energy transfers in a large-scale structure. J. of Comput. Nonlinear Dyn. 11, 021006 (2016). https://doi.org/10.1115/1.4030540

    Article  Google Scholar 

  53. Motato, E., Haris, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87, 169–190 (2017). https://doi.org/10.1007/s11071-016-3034-4

    Article  MATH  Google Scholar 

  54. Georgiades, F., Vakakis, A.F.: Dynamics of a linear beam with an attached local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 12, 643–651 (2005). https://doi.org/10.1016/j.cnsns.2005.07.003

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China [grant number 1207221], the Fundamental Research Funds for the Central Universities [grant number 2013017] and the Ten Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LiQun Chen or Tianzhi Yang.

Ethics declarations

Conflict of interest

We have no competing interests. All authors gave final approval for publication and agree to be accountable for all aspects of the work presented herein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, W., Wang, Z., Chen, L. et al. A high-efficient nonlinear energy sink with a one-way energy converter. Nonlinear Dyn 109, 2247–2261 (2022). https://doi.org/10.1007/s11071-022-07575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07575-4

Keywords

Navigation