Skip to main content
Log in

Non-autonomous grazing phenomenon

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Non-autonomous grazing phenomenon is investigated through periodic systems and their solutions. The analysis is different than for autonomous systems in many aspects. Conditions for the existence of a linearization have been found. Stability of a periodic solution and its persistence under regular perturbations are investigated. Through examples, the theoretical results are visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley-Interscience, Hoboken, NY (2004)

    Book  MATH  Google Scholar 

  2. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods. Wiley, New York (2000)

    MATH  Google Scholar 

  3. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  4. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  5. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  6. Farkas, M.: Periodic Motions. Springer, New York (1998)

    MATH  Google Scholar 

  7. Vestroni, F., Luongo, A., Paolone, A.: A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dynamics 54, 379–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Awrejcewicz, J., Lamarque, C.H.: Bifurcation and Chaos in Nonsmooth Mechanical Systems. World Scientific Series on Nonlinear Science, Singapore (2003)

    Book  MATH  Google Scholar 

  9. Babitsky, V.I.: Theory of Vibro-Impact System and Applications. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  10. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  11. di Bernardo, M., Hogan, S.J.: Discontinuity-induced bifurcations of piecewise smooth dynamical systems. Philos. Trans. R. Soc. A 368, 4915–4935 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brogliato, B.: Nonsmooth Mechanics. Springer, London (1999)

    Book  MATH  Google Scholar 

  13. Burton, R.: Vibration and Impact. Addison-Wesley Publishing Company, New York (1958)

    MATH  Google Scholar 

  14. Foale, S., Bishop, S.R.: Bifurcations in impact oscillations. Nonlinear Dyn. 6, 285–299 (1994)

    Article  MATH  Google Scholar 

  15. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1997)

    MATH  Google Scholar 

  16. Ibrahim, R.A.: Vibro-Impact Dynamics Modeling, Mapping and Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Luo, A.C.J.: Singularity and Dynamics on Discontinuous Vector Fields. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  18. Nagaev, R.F.: Mechanical Processes with Repeated Attenuated Impacts. World Scientific Publishing, Singapore (1985)

    Google Scholar 

  19. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  20. Tung, P.C., Shaw, S.W.: The dynamics of an impact print hammer. J. Vib. Acoust. Stress Reliab. Des. 110, 193–200 (1988)

    Article  Google Scholar 

  21. Vogel, S., Linz, S.J.: Regular and chaotic dynamics in bouncing ball models. Int. J. Bifurc. Chaos 21, 869–884 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. di Bernardo, M., Budd, C.J., Champneys, A.R.: Grazing bifurcations in n-dimensional piecewise-smooth dynamical systems. Phys. D 160, 222–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. di Bernardo, M., Budd, C.J., Champneys, A.R.: Grazing, skipping and sliding: analysis of the nonsmooth dynamics of the DC/DC buck converter. Nonlinearity 11, 858–890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Donde, V., Hiskens, I.A.: Shooting methods for locating grazing phenomena in hybrid systems. Int. J. Bifur. Cation Chaos 16(3), 671–692 (2006)

  25. Junca, S., Tong, L.: Limitation on the method of strained coordinates for vibrations with weak grazing unilateral contact. Nonlinear Dyn. 80, 197–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hosa, C., Champneys, A.R.: Grazing bifurcations and chatter in a pressure relief valve model. Phys. D 241, 2068–2076 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kapitaniak, T., Wiercigroch, M.: Dynamics of impact oscillators: an introduction. Chaos Solitons Fractals 11, 2411–2412 (2000)

    Article  MATH  Google Scholar 

  28. Kryzhevich, S., Wiercigroch, M.: Topology of vibro-impact systems in the neighborhood of grazing. Phys. D Nonlinear Phenom. 241(22), 919–1931 (2012)

    Article  MathSciNet  Google Scholar 

  29. Luo, A.C.J., Gegg, B.C.: Grazing phenomena in a periodically forced, friction-induced, linear oscillator. Commun. Nonlinear Sci. Numer. Simul. 11, 777–802 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo, A.C.J.: Discontinuous Dynamical Systems on Time-Varying Domains. Higher Education Press, Beijing (2009)

    Book  MATH  Google Scholar 

  31. Luo, A.C.J.: A theory for non-smooth dynamical systems on connectible domains. Commun. Nonlinear Sci. Numer. Simul. 10, 1–55 (2005)

    Article  MathSciNet  Google Scholar 

  32. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Article  Google Scholar 

  33. Nordmark, A.B.: Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators. Nonlinearity 14, 1517–1542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nordmark, A.B., Kowalczyk, P.: A codimension-two scenario of sliding solutions in grazing–sliding bifurcations. Nonlinearity 19, 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Piiroinen, P.T., Virgin, L.N., Champneys, A.R.: Chaos and period-adding: experimental and numerical verification of the grazing bifurcation. J. Nonlinear Sci. 14, 383–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Akhmet, M.U., Kıvılcım, A.: Discontinuous dynamics with grazing points. Commun. Nonlinear Sci. Numer. Simul. 38, 218–242 (2016)

    Article  MathSciNet  Google Scholar 

  37. Akhmet, M.U.: Principles of Discontinuous Dynamical Systems. Springer, New York (2010)

    Book  MATH  Google Scholar 

  38. Apostol, T.M.: Calculus, Volume 1, One-Variable Calculus with an Introduction to Linear Algebra. Wiley, New York (1967)

    MATH  Google Scholar 

  39. Arkhipova, I.M., Luongo, A.: Stabilization via parametric excitation of multi-dof statically unstable systems. Commun. Nonlinear Sci. Numer. Simul. 19, 3913–3926 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat Akhmet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmet, M., Kıvılcım, A. Non-autonomous grazing phenomenon. Nonlinear Dyn 87, 1973–1984 (2017). https://doi.org/10.1007/s11071-016-3167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3167-5

Keywords

Navigation