Skip to main content
Log in

Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new intermittency in a periodically driven vibro-impact system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We focus on the coexistence of strange nonchaotic attractors (SNAs) and a novel mixed attractor in a periodically driven three-degree-of-freedom vibro-impact system with symmetry. SNAs are characterized by the local largest Lyapunov exponent and the phase sensitivity property. The Poincaré map P is the twofold composition of a six-dimensional implicit map Q, implying the symmetry of the vibro-impact system. Since the map Q can capture two conjugate attractors, it is used to investigate the dynamics of the system. With a suitable parameter combination, the Poincaré map P of the vibro-impact system exhibits Neimark–Sacker–pitchfork (NS-P) bifurcation. It is shown that dense phase-locking regions exist in a small parameter interval near this NS-P bifurcation point. Three types of attractors alternate in this small interval: two conjugate phase-locked periodic attractors, two conjugate SNAs and a special type of mixed attractor. As the force frequency \(\omega \) is increased gradually, many phase-locking regions disappear, and the coexistence of two conjugate SNAs takes place instead, which is accompanied by a quick decrease in the width of phase-locking. If two conjugate strange nonchaotic limit sets are suddenly embedded in a chaotic one, a special mixed attractor is caused by a new intermittency accompanied by symmetry restoring bifurcation. This symmetry restoring bifurcation is the result of the collision between two conjugate strange nonchaotic limit sets and a symmetric limit set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.A.: Strange attractors that are not chaotic. Phys. D 13, 261–268 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yalcinkaya, T., Lai, Y.-C.: Blowout bifurcation route to strange nonchaotic attractors. Phys. Rev. Lett. 77, 5039–5042 (1996)

    Article  Google Scholar 

  3. Prasad, A., Ramaswamy, R., Satija, I.I., Shah, N.: Collision and symmetry breaking in the transition to strange nonchaotic attractors. Phys. Rev. Lett. 83, 4530–4533 (1999)

    Article  Google Scholar 

  4. Kuznetsov, S.P., Neumann, E., Pikovsky, A., Sataev, I.R.: Critical point of tori-collision in quasiperiodically forced systems. Phys. Rev. E 62, 1995–2007 (2000)

    Article  MathSciNet  Google Scholar 

  5. Nishikawa, T., Kaneko, K.: Fractal properties of a torus as a strange nonchaotic attractor. Phys. Rev. E 54, 6114–6124 (1996)

    Article  Google Scholar 

  6. Hunt, B.R., Ott, E.: Fractal properties of robust strange nonchaotic attractors. Phys. Rev. Lett. 87, 254101 (2001)

    Article  Google Scholar 

  7. Kim, J.W., Kim, S.-Y., Hunt, B., Ott, E.: Fractal properties of robust strange nonchaotic attractors in maps of two or more dimensions. Phys. Rev. E 67(3), 036211 (2003)

    Article  MathSciNet  Google Scholar 

  8. Datta, S., Ramaswamy, R., Prasad, A.: Fractalization route to strange nonchaotic dynamics. Phys. Rev. E 70, 046203 (2004)

    Article  Google Scholar 

  9. Prasad, A., Mehra, V., Ramaswamy, R.: Intermittency route to strange nonchaotic attractors. Phys. Rev. Lett. 79, 4127–4130 (1997)

    Article  Google Scholar 

  10. Venkatesan, A., Lakshmanan, M., Prasad, A., Ramaswamy, R.: Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator. Phys. Rev. E 61, 3641–3651 (2000)

    Article  Google Scholar 

  11. Kim, S.Y., Lim, W., Ott, E.: Mechanism for the intermittent route to strange nonchaotic attractors. Phys. Rev. E 67, 056203 (2003)

    Article  Google Scholar 

  12. Venkatesan, A., Murali, K., Lakshmanan, M.: Birth of strange nonchaotic attractors through type III intermittency. Phys. Lett. A 259, 246–253 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osinga, H.M., Feudel, U.: Boundary crisis in quasiperiodically forced systems. Phys. D 141, 54–64 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, S.-Y., Lim, W.: Mechanism for boundary crises in quasiperiodically forced period-doubling systems. Phys. Lett. A 334, 160–168 (2005)

    Article  MATH  Google Scholar 

  15. Witt, A., Feudel, U., Pikovsky, A.S.: Birth of strange nonchaotic attractors due to interior crisis. Phys. D 109, 180–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lim, W., Kim, S.-Y.: Interior crises in quasiperiodically forced period-doubling systems. Phys. Lett. A 355, 331–336 (2006)

    Article  Google Scholar 

  17. Lim, W., Kim, S.-Y.: Dynamical mechanism for band-merging transitions in quasiperiodically forced systems. Phys. Lett. A 335, 383–393 (2005)

    Article  MATH  Google Scholar 

  18. Senthilkumar, D.V., Srinivasan, K., Thamilmaran, K., Lakshmanan, M.: Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force. Phys. Rev. E 78, 066211 (2008)

    Article  Google Scholar 

  19. Suresh, K., Prasad, A., Thamilmaran, K.: Birth of strange nonchaotic attractors through formation and merging of bubbles in a quasiperiodically forced Chua’s oscillator. Phys. Lett. A 377, 612–621 (2013)

    Article  MathSciNet  Google Scholar 

  20. Feudel, U., Kurths, J., Pikovsky, A.S.: Strange non-chaotic attractor in a quasi-periodically forced circle map. Phys. D 8, 176–186 (1995)

    Article  MATH  Google Scholar 

  21. Feudel, U., Grebogi, G., Ott, E.: Phase-locking in quasiperiodically forced systems. Phys. Rep. 290, 11–25 (1997)

    Article  Google Scholar 

  22. Anishchenko, V.S., Vadivasova, T.E., Sosnovtseva, O.: Strange nonchaotic attractors in antonomous and periodically driven systems. Phys. Rev. E 54, 3231–3234 (1996)

    Article  Google Scholar 

  23. Pikovsky, A.S., Feudel, U.: Comment on “strange nonchaotic attractors in antonomous and periodically driven systems”. Phys. Rev. E 6(56), 7320–7321 (1997)

    Article  Google Scholar 

  24. Zhang, Y.X., Luo, G.W.: Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system. J. Sound Vib. 332, 5462–5475 (2013)

    Article  Google Scholar 

  25. Chossat, P., Golubitsky, M.: Symmetry-increasing bifurcation of chaotic attractors. Phys. D 32, 423–436 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 11(36), 5366–5380 (1987)

    MathSciNet  Google Scholar 

  27. Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507–1510 (1982)

    Article  MathSciNet  Google Scholar 

  28. Grebogi, C., Ott, E., Yorke, J.A.: Crisis, sudden changes in chaotic attractors and transient chaos. Phys. D 7, 181–200 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ben-Tal, A.: Symmetry restoration in a class of forced oscillators. Phys. D 171, 236–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84(2), 173–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shaw, S.W.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 92(2), 199–212 (1985)

    Article  Google Scholar 

  32. Whiston, G.S.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 115(2), 303–319 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luo, A.C.J.: Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator. Chaos Solitons Fractals 19, 823–839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Luo, G.W., Xie, J.H.: Hopf bifurcation and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases. Int. J. Non Linear Mech. 37(1), 19–34 (2002)

    Article  MATH  Google Scholar 

  35. Xie, J.H., Ding, W.C.: Hopf-Hopf bifurcation and invariant torus \(T^{2}\) of a vibro-impact system. Int. J. Non Linear Mech. 40, 531–543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ding, W.C., Xie, J.H., Sun, Q.G.: Interaction of Hopf and period-doubling bifurcations of a vibro-impact system. J. Sound Vib. 275, 27–45 (2004)

    Article  MATH  Google Scholar 

  37. Yue, Y., Xie, J.H.: Neimark-Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system. Int. J. Non Linear Mech. 48, 51–58 (2013)

    Article  Google Scholar 

  38. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145(2), 279–297 (1991)

    Article  Google Scholar 

  39. Mehran, K., Zahawi, B., Giaouris, D.: Investigation of the near-grazing behavior in hard-impact oscillators using model-based TS fuzzy approach. Nonlinear Dyn. 69, 1293–1309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kundu, S., Banerjee, S., Ing, J., Pavlovskaia, E., Wiercigroch, M.: Singularities in soft-impacting systems. Phys. D 241, 553–565 (2012)

    Article  MATH  Google Scholar 

  41. Ma, Y., Ing, J., Banerjee, S., Wiercigroch, M., Pavlovskaia, E.: The nature of the normal form map for soft impacting systems. Int. J. Non Linear Mech. 43, 504–513 (2008)

    Article  Google Scholar 

  42. Chillingworth, D.R.J.: Dynamics of an impacting oscillator near a degenerate graze. Nonlinearity 23, 2723–2748 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, X., Dankowicz, H.: Unfolding degenerate grazing dynamics in impact actuators. Nonlinearity 19, 399–418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thota, P., Dankowicz, H.: Analysis of grazing bifurcations of quasiperiodic system attractors. Phys. D 220, 163–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kryzhevich, S., Wiercigroch, M.: Topology of vibro-impact systems in the neighborhood of grazing. Phys. D 241, 1919–1931 (2012)

    Article  MathSciNet  Google Scholar 

  46. Du, Z.D., Li, Y.R., Shen, J., Zhang, W.N.: Impact oscillators with homoclinic orbit tangent to the wall. Phys. D 245, 19–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. O’Connor, D., Luo, A.C.J.: On discontinuous dynamics of a freight train suspension system. Int. J. Bifurcat. Chaos 12(24), 1450163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gan, C.B., Lei, H.: Stochastic dynamic analysis of a kind of vibro-impact system under multiple harmonic and random excitations. J. Sound Vib. 330, 2174–2184 (2011)

    Article  Google Scholar 

  49. Zhai, H.M., Ding, Q.: Stability and nonlinear dynamics of a vibration system with oblique collisions. J. Sound Vib. 332, 3015–3031 (2013)

    Article  Google Scholar 

  50. Xu, H.D., Wen, G.L., Qin, Q.X., Zhou, H.A.: New explicit critical criterion of Hopf-Hopf bifurcation in a general discrete time system. Commun. Nolinear Sci. Numer. Simul. 18, 2120–2128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Feng, J.Q., Xu, W.: Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems. Chin. J. Theor. Appl. Mech. 45(1), 30–36 (2013)

    Google Scholar 

  52. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331(21), 4599–4608 (2012)

    Article  Google Scholar 

  53. Gendelman, O.V., Alloni, A.: Dynamics of forced system with vibro-impact energy sink. J. Sound Vib. 358(8), 301–314 (2015)

    Article  Google Scholar 

  54. Brake, M.R.: The effect of the contact model on the impact-vibration response of continuous and discrete systems. J. Sound Vib. 332, 3849–3878 (2013)

    Article  Google Scholar 

  55. Wagg, D.J.: Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems. Nonlinear Dyn. 43(1–2), 137–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nordmark, A.B., Piiroinen, P.T.: Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn. 58(1–2), 85–106 (2009)

    Article  MATH  Google Scholar 

  57. Luo, G.W., Shi, Y.Q., Jiang, C.X., Zhao, L.Y.: Diversity evolution and parameter matching of periodic-impact motions of a periodically forced system with a clearance. Nonlinear Dyn. 78, 2577–2604 (2014)

    Article  Google Scholar 

  58. Zhang, H.G., Zhang, Y.X., Luo, G.W.: Basin of coexisting multi-dimensional tori in a vibro-impact system. Nonlinear Dyn. 79, 2177–2185 (2015)

    Article  Google Scholar 

  59. Yue, X.L., Xu, W., Wang, L.: Global analysis of boundary and interior crises in an elastic impact oscillator. Commun. Nolinear Sci. Numer. Simul. 18, 3567–3574 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yue, Y., Xie, J.H.: Capturing the symmetry of attractors and the transition to symmetric chaos in a vibro-impact system. Int. J. Bifurcat. Chaos 5(22), 1250109 (2012)

    Article  MATH  Google Scholar 

  61. Yue, Y., Xie, J.H.: Lyapunov exponents and coexistense of attractors in vibro-impact systems with symmetric two-sided constraints. Phys. Lett. A 373, 2041–2046 (2009)

    Article  MATH  Google Scholar 

  62. Yang, G.D., Xu, W., Gu, X.D., Huang, D.M.: Response analysis for a vibroimpact Duffing system with bilateral barriers under external and parametric Gaussian white noises. Chaos Solitons Fractals 87, 125–135 (2016)

    Article  MathSciNet  Google Scholar 

  63. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis and Tools. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  64. Pikovsky, A.S., Feudel, U.: Characterizing strange nonchaotic attractors. Chaos 5, 253–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  65. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  66. Grassberger, P., Baddii, R., Politi, A.: Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors. J. Stat. Phys. 51, 135–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  67. Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. J. Nonlinear Sci. 1, 175–199 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  68. Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Local Lyapunov exponents computed from observed data. J. Nonlinear Sci. 2, 343–365 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  69. Wang, X., Zhan, M., Lai, C.H., Lai, Y.C.: Strange nonchaotic attractors in random dynamical systems. Phys. Rev. Lett. 92, 074102 (2004)

    Article  Google Scholar 

  70. Prasad, A., Ramaswamy, R.: Characteristic distributions of finite-time Lyapunov exponents. Phys. Rev. E 60(3), 2761–2766 (1999)

    Article  Google Scholar 

  71. Kapitaniak, T.: Generating strange nonchaotic trajectories. Phys. Rev. E 47(2), 1408–1410 (1993)

    Article  Google Scholar 

  72. Pikovsky, A.S., Feudel, U.: Correlations and spectra of strange nonchaotic attractors. J. Phys. A 27, 5209–5219 (1994)

    Article  MATH  Google Scholar 

  73. Yalcinkaya, T., Lai, Y.C.: Bifurcation to strange nonchaotic attractors. Phys. Rev. E 56, 1623–1630 (1997)

    Article  MathSciNet  Google Scholar 

  74. Ding, M., Grebogi, C., Ott, E.: Dimensions of strange nonchaotic attractors. Phys. Lett. A 137, 167–172 (1989)

    Article  MathSciNet  Google Scholar 

  75. Manffra, E.F., Caldas, I.L., Viana, R.L., Kalinowski, H.J.: Type-I intermittency and crisis-induced intermittency in a semiconductor laser under injection current modulation. Nonlinear Dyn. 27, 185–195 (2002)

    Article  MATH  Google Scholar 

  76. Werner, J.P., Stemler, T., Benner, H.: Crisis and stochastic resonance in Shinrili’s circuit. Phys. D 237, 859–865 (2008)

    Article  MathSciNet  Google Scholar 

  77. Chian, A.C.-L., Rempel, E.L., Rogers, C.: Complex economic dynamics: chaotic saddle, crisis and intermittency. Chaos Solitons Fractals 29, 1194–1218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  78. Tchistiakov, V.: Detecting symmetry breaking bifurcations in the system describing the dynamics of coupled arrays of Josephson junctions. Phys. D 91, 67–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (11272268, 11572263) and Scholarship of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yue.

Appendices

Appendix 1: Expressions of the integration constants \(a_i\) and \(b_i\) as the function of the initial conditions

Let the coordinates of the initial map point \(\mathbf{X}_0 \in {\varvec{\Pi }} _1 \) be \((x_{10} ,x_{20} ,y_{10} ,y_{20} ,y_{30} ,\tau _0 )\). Substituting \(t=0\) into the general solutions shown in Eq. (8), we obtain

$$\begin{aligned} x_{i0}= & {} \psi _{i1} (a_1 +A_1 \sin \tau _0 +B_1 \cos \tau _0 )\nonumber \\&+\,\psi _{i2} (a_2 +A_2 \sin \tau _0 +B_2 \cos \tau _0 ) \nonumber \\&+\,\psi _{i3} (a_3 +A_3 \sin \tau _0 +B_3 \cos \tau _0 ),\nonumber \\ i= & {} 1,\, 2; \end{aligned}$$
(40)

and

$$\begin{aligned} y_{i0}= & {} \psi _{i1} (-\eta _1 a_1 +\omega _{d1} b_1 +A_1 \omega \cos \tau _0 -B_1 \omega \sin \tau _0 )\nonumber \\&+\,\psi _{i2} (-\eta _2 a_2 +\omega _{d2} b_2 \nonumber \\&+\,A_2 \omega \cos \tau _0 -B_2 \omega \sin \tau _0 )\nonumber \\&+\,\psi _{i3} (-\eta _3 a_3 +\omega _{d3} b_3 \nonumber \\&+\,A_3 \omega \cos \tau _0 -B_3 \omega \sin \tau _0 )\nonumber \\ i= & {} 1, 2, 3; \end{aligned}$$
(41)

Besides, since \(x_2^*-x_3^*=h\) with \(t=0\), the following relation holds:

$$\begin{aligned} x_{20} -x_{30}= & {} \psi _{21} a_1 +\psi _{22} a_2 +\psi _{23} a_3 \nonumber \\&+\,(\psi _{21} A_1 +\psi _{22} A_2 +\psi _{23} A_3 )\sin \tau _0 \nonumber \\&+\,(\psi _{21} B_1 +\psi _{22} B_2 +\psi _{23} B_3 )\cos \tau _0 \nonumber \\&-\,[\psi _{11} a_1 +\psi _{12} a_2 +\psi _{13} a_3 \nonumber \\&+\,(\psi _{11} A_1 +\psi _{12} A_2 +\psi _{13} A_3 )\sin \tau _0 \nonumber \\&+\,(\psi _{11} B_1 +\psi _{12} B_2 +\psi _{13} B_3 )\cos \tau _0 ] \nonumber \\= & {} h. \end{aligned}$$
(42)

(44), (45) and (46) generate six equations about six unknowns \(a_i \) and \(b_i \) (\(i=1, 2, 3\)). Then the integration constants \(a_i \) and \(b_i \) can be expressed as the following functions depending on the initial conditions \((x_{10} ,x_{20} ,y_{10} ,y_{20} ,y_{30} ,\tau _0 )\):

$$\begin{aligned}&a_i (x_{10} ,x_{20} ,\tau _0 )=\alpha _{1i} x_{10} +\alpha _{2i} x_{20} \nonumber \\&\quad +\,\alpha _{3i} \sin \tau _0 +\alpha _{4i} \cos \tau _0 +\alpha _{5i}, \end{aligned}$$
(43a)
$$\begin{aligned}&b_i (x_{10} ,y_{10} ,x_{20} ,y_{20} ,y_{30} ,\tau _0 )=\beta _{1i} x_{10}\nonumber \\&\quad +\,\beta _{2i} x_{20} +\beta _{3i} y_{10} +\beta _{4i} y_{20} \nonumber \\&\quad +\,\beta _{5i} y_{30} +\beta _{6i} \sin \tau _0 +\beta _{7i} \cos \tau _0 +\beta _{8i}, \end{aligned}$$
(43b)

where \(\alpha _{ji} (j=1,\ldots ,5)\) and \(\beta _{ki} (k=1,\ldots ,8)\) are constants determined by system parameters.

If the initial conditions \((x_{10} ,x_{20} ,y_{10} ,y_{20} ,y_{30} ,\tau _0 )\) are replaced by \((x_1 (n),x_2 (n),y_1 (n),y_2 (n),y_3 (n),\tau (n))\), Eq. (13) is obtained.

Then we obtain the partial derivatives of the integration constants about the initial conditions \((x_{10},x_{20},y_{10},y_{20},y_{30},\tau _0)\):

$$\begin{aligned} \frac{\partial a_i }{\partial x_{10} }= & {} \alpha _{1i} ,\quad \frac{\partial a_i }{\partial x_{20} }=\alpha _{2i} ,\nonumber \\ \frac{\partial a_i }{\partial y_{10} }= & {} 0,\quad \frac{\partial a_i }{\partial y_{20} }=0,\quad \frac{\partial a_i }{y_{30} }=0,\nonumber \\ \frac{\partial a_i }{\tau _0 }= & {} \alpha _{3i} \cos \tau _0 -\alpha _{4i} \sin \tau _0 , \end{aligned}$$
(44a)
$$\begin{aligned} \frac{\partial b_i }{\partial x_{10} }= & {} \beta _{1i} ,\quad \frac{\partial b_i }{\partial x_{20} }=\beta _{2i} ,\quad \frac{\partial b_i }{\partial y_{10} }=\beta _{3i},\nonumber \\ \frac{\partial b_i }{\partial y_{20} }= & {} \beta _{4i} , \quad \frac{\partial b_i }{\partial y_{30} }=\beta _{5i} ,\nonumber \\ \frac{\partial b_i }{\tau _0 }= & {} \beta _{6i} \cos \tau _0 -\beta _{7i} \sin \tau _0 . \end{aligned}$$
(44b)

Appendix 2: Expressions of Jacobi matrix

We replace the initial conditions \((x_1 (n),x_2 (n),y_1 (n),y_2 (n),y_3 (n),\tau (n))\) by \((x_{10} ,x_{20} ,y_{10} ,y_{20} ,y_{30} ,\tau _0 )\), Eq. (14) is rewritten as:

$$\begin{aligned} G= & {} x_2 (n+1)-x_3 (n+1)+h \nonumber \\= & {} \sum _{j=1}^3 {\psi _{2j} } \{e^{-\eta _j t}[a_j \cos (\omega _{dj} t)+b_j \sin (\omega _{dj} t)]\nonumber \\&+\,A_j \sin (\omega t+\tau _0 )+B_j \cos (\omega t+\tau _0 )\} \nonumber \\&-\sum _{j=1}^3 {\psi _{3j} } \{e^{-\eta _j t}[a_j \cos (\omega _{dj} t)\nonumber \\&+\,b_j \sin (\omega _{dj} t)]+A_j \sin (\omega t+\tau _0 )\nonumber \\&+\,B_j \cos (\omega t+\tau _0 )\}+h =0 \end{aligned}$$
(45)

According to the implicit function theorem, we obtain

$$\begin{aligned} \frac{\partial t}{\partial x_{10} }= & {} {-\frac{\partial G}{\partial x_{10} }}\Big /{\frac{\partial G}{\partial t}},\quad \frac{\partial t}{\partial x_{20} }={-\frac{\partial G}{\partial x_{20} }}\Big /{\frac{\partial G}{\partial t}},\nonumber \\ \frac{\partial t}{\partial y_{10} }= & {} {-\frac{\partial G}{\partial y_{10} }}\Big /{\frac{\partial G}{\partial t}},\nonumber \\ \frac{\partial t}{\partial y_{20} }= & {} {-\frac{\partial G}{\partial y_{20} }}\Big /{\frac{\partial G}{\partial t}},\quad \frac{\partial t}{\partial y_{30} }={-\frac{\partial G}{\partial y_{30} }}\Big /{\frac{\partial G}{\partial t}},\nonumber \\ \frac{\partial t}{\partial \tau _0 }= & {} {-\frac{\partial G}{\partial \tau _0 }}\Big /{\frac{\partial G}{\partial t}}. \end{aligned}$$
(46)

Let the Jacobi matrix \(\mathbf{J}_\mathbf{Q} (\mathbf{X}_0 )=[J_{ij} ]_{6\times 6} \). According to the expression shown in Eq. (12), \(a_{ij}\) can be computed as follows by the chain rule:

$$\begin{aligned} J_{i1}= & {} \frac{\partial f_i }{\partial a_1 }\frac{\partial a_1 }{\partial x_{10} }+\frac{\partial f_i }{\partial b_1 }\frac{\partial b_1 }{\partial x_{10} }+\frac{\partial f_i }{\partial a_2 }\frac{\partial a_2 }{\partial x_{10} }+\frac{\partial f_i }{\partial b_2 }\frac{\partial b_2 }{\partial x_{10} }\nonumber \\&+\,\frac{\partial f_i }{\partial a_3 }\frac{\partial a_3 }{\partial x_{10} }+\frac{\partial f_i }{\partial b_3 }\frac{\partial b_3 }{\partial x_{10} }+\frac{\partial f_i }{\partial t}\frac{\partial t}{\partial x_{10} }, \end{aligned}$$
(47a)
$$\begin{aligned} J_{i2}= & {} \frac{\partial f_i }{\partial a_1 }\frac{\partial a_1 }{\partial x_{20} }+\frac{\partial f_i }{\partial b_1 }\frac{\partial b_1 }{\partial x_{20} }+\frac{\partial f_i }{\partial a_2 }\frac{\partial a_2 }{\partial x_{20} }\nonumber \\&+\,\frac{\partial f_i }{\partial b_2 }\frac{\partial b_2 }{\partial x_{20} }+\frac{\partial f_i }{\partial a_3 }\frac{\partial a_3 }{\partial x_{20} }+\frac{\partial f_i }{\partial b_3 }\frac{\partial b_3 }{\partial x_{20} }+\frac{\partial f_i }{\partial t}\frac{\partial t}{\partial x_{20} },\nonumber \\ \end{aligned}$$
(47b)
$$\begin{aligned} J_{i3}= & {} \frac{\partial f_i }{\partial a_1 }\frac{\partial a_1 }{\partial y_{10} }+\frac{\partial f_i }{\partial b_1 }\frac{\partial b_1 }{\partial y_{10} } +\frac{\partial f_i }{\partial a_2 }\frac{\partial a_2 }{\partial y_{10} }\nonumber \\&+\,\frac{\partial f_i }{\partial b_2 }\frac{\partial b_2 }{\partial y_{10} }+\frac{\partial f_i }{\partial a_3 }\frac{\partial a_3 }{\partial y_{10} }+\frac{\partial f_i }{\partial b_3 }\frac{\partial b_3 }{\partial y_{10} }+\frac{\partial f_i }{\partial t}\frac{\partial t}{\partial y_{10} },\nonumber \\ \end{aligned}$$
(47c)
$$\begin{aligned} J_{i4}= & {} \frac{\partial f_i }{\partial a_1 }\frac{\partial a_1 }{\partial y_{20} }+\frac{\partial f_i }{\partial b_1 }\frac{\partial b_1 }{\partial y_{20} }+\frac{\partial f_i }{\partial a_2 }\frac{\partial a_2 }{\partial y_{20} }\nonumber \\&+\,\frac{\partial f_i }{\partial b_2 }\frac{\partial b_2 }{\partial y_{20} }+\frac{\partial f_i }{\partial a_3 }\frac{\partial a_3 }{\partial y_{20} }+\frac{\partial f_i }{\partial b_3 }\frac{\partial b_3 }{\partial y_{20} }+\frac{\partial f_i }{\partial t}\frac{\partial t}{\partial y_{20} },\nonumber \\ \end{aligned}$$
(47d)
$$\begin{aligned} J_{i5}= & {} \frac{\partial f_i }{\partial a_1 }\frac{\partial a_1 }{\partial y_{30} }+\frac{\partial f_i }{\partial b_1 }\frac{\partial b_1 }{\partial y_{30} }+\frac{\partial f_i }{\partial a_2 }\frac{\partial a_2 }{\partial y_{30} }+\frac{\partial f_i }{\partial b_2 }\frac{\partial b_2 }{\partial y_{30} }\nonumber \\&+\,\frac{\partial f_i }{\partial a_3 }\frac{\partial a_3 }{\partial y_{30} }+\frac{\partial f_i }{\partial b_3 }\frac{\partial b_3 }{\partial y_{30} }+\frac{\partial f_i }{\partial t}\frac{\partial t}{\partial y_{30} }, \end{aligned}$$
(47e)
$$\begin{aligned} J_{i6}= & {} \frac{\partial f_i }{\partial a_1 }\frac{\partial a_1 }{\partial \tau _0 }+\frac{\partial f_i }{\partial b_1 }\frac{\partial b_1 }{\partial \tau _0 }+\frac{\partial f_i }{\partial a_2 }\frac{\partial a_2 }{\partial \tau _0 }+\frac{\partial f_i }{\partial b_2 }\frac{\partial b_2 }{\partial \tau _0 }\nonumber \\&+\,\frac{\partial f_i }{\partial a_3 }\frac{\partial a_3 }{\partial \tau _0 }+\frac{\partial f_i }{\partial b_3 }\frac{\partial b_3 }{\partial \tau _0 }+\frac{\partial f_i }{\partial t}\frac{\partial t}{\partial \tau _0 }+\frac{\partial f_i }{\partial \tau _0 }. \end{aligned}$$
(47f)

where \(\frac{\partial a_i }{\partial x_{10} }\), \(\frac{\partial a_i }{\partial x_{20} }\), \(\frac{\partial a_i }{\partial y_{10} }\), \(\frac{\partial a_i }{\partial y_{20} }\), \(\frac{\partial a_i }{y_{30} }\), \(\frac{\partial a_i }{\tau _0 }\),\(\frac{\partial b_i }{\partial x_{10} }\), \(\frac{\partial b_i }{\partial x_{20} }\), \(\frac{\partial b_i }{\partial y_{10} }\), \(\frac{\partial b_i }{\partial y_{20} }\), \(\frac{\partial b_i }{\partial y_{30} }\), \(\frac{\partial b_i }{\tau _0 }\) are shown as Eq. (44).

Appendix 3: Analytic solutions of symmetric fixed point

Let the coordinates of the symmetric fixed point X \(^{*}\) be \((x_1^*,x_2^*,y_1^*,y_2^*,y_3^*,\tau ^{*})\). For both stable and unstable cases, the coordinates of the symmetric fixed point X \(^{*}\) can be determined analytically by \(\mathbf{X}^{*}=\mathbf{Q}(\mathbf{X}^{*})\). Since \(\mathbf{Q}=\mathbf{R}^{-1}\circ \mathbf{Q}_u \), \(\mathbf{X}^{*}=\mathbf{Q}(\mathbf{X}^{*})\) means \(\mathbf{RX}^{*}=\mathbf{Q}_u (\mathbf{X}^{*})\), which implies that after \(M_3 \) impacts the right and the left stops, the associated state coordinates of map point are equal in absolute value and opposite in direction.

Let the initial time be \(t_0 =0\) after impacting at the left stop, and inserting it to Eq. (8), we obtain the coordinates \(x_i (t_0 )\) and \(y_i (t_0 )=\dot{x}_i (t_0 )(i=1,2,3)\) after impacting at the left stop. Then let the time be \(t_1 =\frac{n\pi }{\omega }\) (i.e., half of n excitation periods) where n is an odd integer, and inserting it into Eq. (8), we obtain the coordinates \(x_i (t_1 )\) and \(y_i (t_1 )=\dot{x}_i (t_1 )(i=1,2,3)\) after impacting at the right stop.

Based on \(\mathbf{RX}^{*}=\mathbf{Q}_u (\mathbf{X}^{*})\), we have

$$\begin{aligned} x_i (t_0 )= & {} -x_i (t_1 ),\nonumber \\ y_i (t_0 )= & {} -y_i (t_1 ) (i=1,2,3);\quad x_2 (t_0 )\nonumber \\&-x_3 (t_0 )=-h. \end{aligned}$$
(48)

Then we obtain the following seven equations about \(\tau =\tau ^{*}\), \(a_i \) and \(b_i (i=1,2,3)\):

$$\begin{aligned}&\sum _{j=1}^3 {\psi _{1j} } (e^{-\eta _j t}a_j +A_j \sin \tau ^{*}+B_j \cos \tau ^{*}) \nonumber \\&\quad =-\sum _{j=1}^3 {\psi _{1j} } \{e^{-\eta _j t_1 }[a_j \cos (\omega _{dj} t_1 )+b_j \sin (\omega _{dj} t_1 )]\nonumber \\&\qquad -A_j \sin \tau ^{*}-B_j \cos \tau ^{*}\} \end{aligned}$$
(49a)
$$\begin{aligned}&\sum _{j=1}^3 {\psi _{2j} } (e^{-\eta _j t}a_j +A_j \sin \tau ^{*}+B_j \cos \tau ^{*}) \nonumber \\&\quad =-\sum _{j=1}^3 {\psi _{2j} } \{e^{-\eta _j t_1 }[a_j \cos (\omega _{dj} t_1 )+b_j \sin (\omega _{dj} t_1 )]\nonumber \\&\qquad -A_j \sin \tau ^{*}-B_j \cos \tau ^{*}\} \end{aligned}$$
(49b)
$$\begin{aligned}&\sum _{j=1}^3 {\psi _{3j} } (e^{-\eta _j t}a_j +A_j \sin \tau ^{*}+B_j \cos \tau ^{*})\nonumber \\&\quad =-\sum _{j=1}^3 {\psi _{3j} } \{e^{-\eta _j t_1 }[a_j \cos (\omega _{dj} t_1 )+b_j \sin (\omega _{dj} t_1 )]\nonumber \\&\qquad -A_j \sin \tau ^{*}-B_j \cos \tau ^{*}\} \end{aligned}$$
(49c)
$$\begin{aligned}&\sum _{j=1}^3 {\psi _{1j} } (-\eta _j a_j +\omega _{dj} b_j +A_j \omega \cos \tau ^{*}-B_j \omega \sin \tau ^{*}) \nonumber \\&\quad =\sum _{j=1}^3 {\psi _{1j} } \{e^{-\eta _j t_1 }[(-\eta _j a_j \nonumber \\&+\omega _{dj} b_j )\cos (\omega _{dj} t_1 )+(-\eta _j b_j -\omega _{dj} a_j )\sin (\omega _{dj} t_1 )]\nonumber \\&\qquad -A_j \omega \cos \tau ^{*}+B_j \omega \sin \tau ^{*}\} \end{aligned}$$
(49d)
$$\begin{aligned}&\sum _{j=1}^3 {\psi _{2j} } (-\eta _j a_j +\omega _{dj} b_j +A_j \omega \cos \tau ^{*}-B_j \omega \sin \tau ^{*}) \nonumber \\&\quad =\sum _{j=1}^3 {\psi _{2j} } \{e^{-\eta _j t_1 }[(-\eta _j a_j \nonumber \\&\quad +\,\omega _{dj} b_j )\cos (\omega _{dj} t_1 )+(-\eta _j b_j -\omega _{dj} a_j )\sin (\omega _{dj} t_1 )]\nonumber \\&\qquad -A_j \omega \cos \tau ^{*}+B_j \omega \sin \tau ^{*}\} \end{aligned}$$
(49e)
$$\begin{aligned}&\sum _{j=1}^3 {\psi _{3j} } (-\eta _j a_j +\omega _{dj} b_j +A_j \omega \cos \tau ^{*}-B_j \omega \sin \tau ^{*}) \nonumber \\&\quad =\sum _{j=1}^3 {\psi _{3j} } \{e^{-\eta _j t_1 }[(-\eta _j a_j +\omega _{dj} b_j )\cos (\omega _{dj} t_1 )\nonumber \\&\qquad +\,(-\eta _j b_j -\omega _{dj} a_j )\sin (\omega _{dj} t_1 )]\nonumber \\&\qquad -A_j \omega \cos \tau ^{*}+B_j \omega \sin \tau ^{*}\} \end{aligned}$$
(49f)
$$\begin{aligned}&\sum _{j=1}^3 {\psi _{2j} } (e^{-\eta _j t}a_j +A_j \sin \tau ^{*}+B_j \cos \tau { }^*)\nonumber \\&\quad -\sum _{j=1}^3 {\psi _{3j} } (e^{-\eta _j t}a_j +A_j \sin \tau ^{*}+B_j \cos \tau ^{*})=-h.\nonumber \\ \end{aligned}$$
(49g)

By elimination and simplification, we obtain the following equation about \(\tau ^{*}\):

$$\begin{aligned} u\cos \tau ^{*}+v\sin \tau ^{*}=h \end{aligned}$$
(50)

where u and v are constants determined by the system parameters. Then \(\tau ^{*}\) can be solved as

$$\begin{aligned} \tau ^{*}=\left\{ {{\begin{array}{ll} 2\tan ^{-1}\left( {\frac{v\pm \sqrt{u^{2}+v^{2}-h^{2}}}{u+h}} \right) ,&{}\quad u+h\ne 0 \\ 2\tan ^{-1}\left( {\frac{h-u}{2v}} \right) ,&{}\quad u+h=0 \\ \end{array} }} \right. . \end{aligned}$$
(51)

Subsequently, inserting the expression of \(\tau ^{*}\) into Eq. (49), we obtain expressions of integration constants \(a_i \) and \(b_i \quad (i=1,2,3)\). Inserting the value of \(a_i \), \(b_i \) and \(\tau ^{*}\) into Eq. (8), and letting the time \(t=0\), we obtain the coordinates \((x_1^*,x_2^*,y_1^*,y_2^*,y_3^*,\tau ^{*})\) of the symmetric fixed point X \(^{*}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Miao, P. & Xie, J. Coexistence of strange nonchaotic attractors and a special mixed attractor caused by a new intermittency in a periodically driven vibro-impact system. Nonlinear Dyn 87, 1187–1207 (2017). https://doi.org/10.1007/s11071-016-3109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3109-2

Keywords

Navigation