Skip to main content
Log in

The non-linear vibrations of rotating functionally graded cylindrical shells

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reports the result of an investigate on the non-linear vibrations of rotating functionally graded cylindrical shell in thermal environment, based on Hamilton’s principle, von Kármán non-linear theory and the first-order shear deformation theory. The formulation includes the initial hoop tension, the centrifugal and Coriolis forces due to rotation of the shell. The effects of in-plane and rotary inertia are taken into account in the equations of motion. Galerkin’s method is utilised to convert the governing partial differential equations to non-linear ordinary differential equations. A reduction in the model is presented to investigate non-linear dynamics, including primary resonance responses, quasi-periodic and chaotic responses to harmonic transverse external forces. The modal coefficients of quadratic and cubic nonlinearities are calculated by Galerkin integration and superimposed on the linear part of equation to establish the non-linear reduction equation. To validate the approach proposed in this paper, a series of comparison are performed and the investigations demonstrate good reliability and low computational cost of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cinefra, M., Carrera, E., Brischetto, S., Belouettar, S.: Thermo-mechanical analysis of functionally graded shells. J. Therm. Stress 33, 942–963 (2010)

    Article  Google Scholar 

  2. Carrera, E., Brischetto, S., Cinefra, M., Soave, M.: Effects of thickness stretching in functionally graded plates and shells. Compos. Part B 42, 123–133 (2011)

    Article  Google Scholar 

  3. Zhang, W., Hao, Y.X., Yang, J.: Nonlinear dynamics of FGM circular cylindrical shell with clamped-clamped edges. Compos. Struct. 94, 1075–1086 (2012)

    Article  Google Scholar 

  4. Sofiyev, A.H.: Buckling analysis of freely-supported functionally graded truncated conical shells under external pressures. Compos. Struct. 132, 746–758 (2015)

    Article  Google Scholar 

  5. Du, C.C., Li, Y.H.: Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments. Compos. Struct. 102, 164–174 (2013)

    Article  Google Scholar 

  6. Malekzadeh, P., Heydarpour, Y.: Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Compos. Struct. 94, 2971–2981 (2012)

    Article  Google Scholar 

  7. Sun, S.P., Cao, D.Q., Han, Q.K.: Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method. Int. J. Mech. Sci. 68, 180–189 (2013)

    Article  Google Scholar 

  8. Nejad, M.Z., Jabbari, M., Ghannad, M.: Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading. Compos. Struct. 122, 561–569 (2015)

    Article  Google Scholar 

  9. Kumar, A., Ray, M.C.: Control of smart rotating laminated composite truncated conical shell using ACLD treatment. Int. J. Mech. Sci. 89, 123–141 (2014)

    Article  Google Scholar 

  10. Dai, H.L., Dai, T., Zheng, H.Y.: Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder. Meccanica 47, 423–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Catellani, G., Pellicano, F., Dall’Asta, D., Amabili, M.: Parametric instability of a circular cylindrical shell with geometric imperfections. Comput. Struct. 82, 2635–2645 (2004)

    Article  Google Scholar 

  12. Pellicano, F.: Dynamic instability of a circular cylindrical shell carrying a top mass under base excitation: experiments and theory. Int. J. Solids Struct. 48, 408–427 (2011)

    Article  MATH  Google Scholar 

  13. Strozzi, M., Pellicano, F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 67, 63–77 (2013)

    Article  Google Scholar 

  14. Duc, N.D., Thang, P.T.: Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations. Aerosp. Sci. Technol. 40, 115–127 (2015)

    Article  Google Scholar 

  15. Taczała, M., Buczkowski, R., Kleiber, M.: Nonlinear free vibration of pre- and post-buckled FGM plates on two-parameter foundation in the thermal environment. Compos. Struct. 137, 85–92 (2016)

    Article  Google Scholar 

  16. Lee, Y.S., Kim, Y.W.: Nonlinear free vibration analysis of rotating hybrid cylindrical shells. Comput. Struct. 70, 161–168 (1999)

    Article  MATH  Google Scholar 

  17. Han, Q.K., Chu, F.L.: Effects of rotation upon parametric instability of a cylindrical shell subjected to periodic axial loads. J. Sound Vib. 332, 5653–5661 (2013)

    Article  Google Scholar 

  18. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part I: numerical solution. Int. J. Mech. Sci. 52, 1217–1224 (2010)

    Article  Google Scholar 

  19. Jansen, E.L.: Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis. Nonlinear Dyn. 39, 349–367 (2005)

    Article  MATH  Google Scholar 

  20. Jansen, E.L., Rolfes, R.: Non-linear free vibration analysis of laminated cylindrical shells under static axial loading including accurate satisfaction of boundary conditions. Int. J. Non-Linear Mech. 66, 66–74 (2014)

    Article  Google Scholar 

  21. Amabili, M., Reddy, J.N.: A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Non-Linear Mech. 45, 409–418 (2010)

    Article  Google Scholar 

  22. Sheng, G.G., Wang, X., Fu, G., Hu, H.: The nonlinear vibrations of functionally graded cylindrical shells surrounded by an elastic foundation. Nonlinear Dyn. 78, 1421–1434 (2014)

    Article  MathSciNet  Google Scholar 

  23. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, 2nd edn. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  24. Rougui, M., Moussaoui, F., Benamar, R.: Geometrically non-linear free and forced vibrations of simply supported circular cylindrical shells: a semi-analytical approach. Int. J. Non-Linear Mech. 42, 1102–1115 (2007)

    Article  MATH  Google Scholar 

  25. Ding, H., Chen, L.Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010)

    Article  Google Scholar 

  26. Pellicano, F., Amabili, M., Païdoussis, M.P.: Effect of the geometry on the non-linear vibration of circular cylindrical shells. Int. J. Non-Linear Mech. 37, 1181–1198 (2002)

    Article  MATH  Google Scholar 

  27. Akira, A.: On non-linear vibration analyses of continuous systems with quadratic and cubic non-linearities. Int. J. Non-Linear Mech. 41, 873–879 (2006)

    Article  MATH  Google Scholar 

  28. Nayfeh, A.H., Mook, D.T.: Non-linear Oscillation. Wiley, New York (1979)

    MATH  Google Scholar 

  29. Wang, L.: A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid. Int. J. Non-Linear Mech. 44, 115–121 (2009)

  30. Markus, S.: The Mechanics of Vibrations of Cylindrical Shells. Elsevier, New York (1988)

    MATH  Google Scholar 

  31. Liew, K.M., Ng, T.Y., Zhao, X., Reddy, J.N.: Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput. Methods Appl. Mech. Engrg. 191, 4141–4157 (2002)

  32. Jafari, A.A., Bagheri, M.: Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution. J. Sound Vib. 296, 353–367 (2006)

    Article  Google Scholar 

  33. Kim, Y.W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 284, 531–549 (2005)

    Article  Google Scholar 

  34. Kadoli, R., Ganesan, N.: Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition. J. Sound Vib. 289, 450–480 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the supports of the Hunan Provincial Natural Science Foundation of China under No. 13JJ4053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Sheng.

Appendices

Appendix 1

$$\begin{aligned} \mathbf{C}(z)= & {} \left[ {{\begin{array}{lllll} {C_{11} }&{} {C_{12} }&{} 0&{} 0&{} 0 \\ {C_{21} }&{} {C_{22} }&{} 0&{} 0&{} 0 \\ 0&{} 0&{} {C_{33} }&{} 0&{} 0 \\ 0&{} 0&{} 0&{} {C_{44} }&{} 0 \\ 0&{} 0&{} 0&{} 0&{} {C_{55} } \\ \end{array} }} \right] ,\nonumber \\ {{\varvec{\upalpha }} }= & {} \left[ {{\begin{array}{lllll} {\alpha _{xxe} }&{} {\alpha _{\theta \theta e} }&{} 0&{} 0&{} 0 \\ \end{array} }} \right] ^{T}. \end{aligned}$$

The effective thermal expansion coefficients (\(\alpha _{xxe} \), \(\alpha _{\theta \theta e}\)) in the two principle directions (x, \(\theta \)) are equal due to in-plane uniform distribution of the functionally graded material properties (\(\alpha _{xxe} =\alpha _{\theta \theta e} =\alpha _\mathrm{{eff}})\). The stiffness coefficients are defined according to

$$\begin{aligned} C_{11}= & {} \frac{E_\mathrm{{eff}}}{1-\nu _\mathrm{{eff}}^{2}},\\ C_{12}= & {} \frac{\nu _\mathrm{{eff}} E_\mathrm{{eff}}}{1-\nu _\mathrm{{eff}}^{2}},\nonumber \\ C_{21}= & {} \frac{\nu _\mathrm{{eff}} E_\mathrm{{eff}}}{1-\nu _\mathrm{{eff}}^{2}},\\ C_{22}= & {} \frac{E_\mathrm{{eff}}}{1-\nu _\mathrm{{eff}}^{2}},\\ C_{33}= & {} C_{44} =C_{55} =\frac{E_\mathrm{{eff}}}{2(1+\nu _\mathrm{{eff}})}. \end{aligned}$$

For a given volume fraction exponent \(\varPhi \), the effective Young’s modulus \(E_\mathrm{{eff}}\), the effective Poisson’s ratio \(\nu _\mathrm{{eff}}\) and the effective thermal expansion coefficients \(\alpha _\mathrm{{eff}}\) can be obtained according to Eq. (4).

Appendix 2

$$\begin{aligned}&\left\{ {{\begin{array}{ll} {N_x^{T}}&{} {M_x^{T}} \\ {N_\theta ^{T}}&{} {M_\theta ^{T}} \\ {N_{x\theta }^{T}}&{} {M_{x\theta }^{T}} \\ \end{array} }} \right\} =\int _{-\frac{h}{2}}^{\frac{h}{2}}\\&\quad \times {\left\{ {{\begin{array}{l} {Q_{11} (z)\alpha _{xxe} (z)+Q_{12} (z)\alpha _{\theta \theta e} (z)} \\ {Q_{12} (z)\alpha _{xxe} (z)+Q_{22} (z)\alpha _{\theta \theta e} (z)} \\ 0 \\ \end{array} }} \right\} \Delta T(z)\left( {{\begin{array}{ll} 1&{} z \\ \end{array} }} \right) \hbox {d}z},\\&Q_x^{T}=Q_\theta ^{T}=0.,\\&\left\{ {\begin{array}{l} N_x \\ N_\theta \\ N_{x\theta } \\ M_x \\ M_\theta \\ M_{x\theta } \\ \end{array}} \right\} \quad =\left[ {{\begin{array}{llllll} {A_{11} }&{} {A_{12} }&{} 0&{} {B_{11} }&{} {B_{12} }&{} 0 \\ {A_{21} }&{} {A_{22} }&{} 0&{} {B_{21} }&{} {B_{22} }&{} 0 \\ 0&{} 0&{} {A_{66} }&{} 0&{} 0&{} {B_{66} } \\ {B_{11} }&{} {B_{12} }&{} 0&{} {D_{11} }&{} {D_{12} }&{} 0 \\ {B_{21} }&{} {B_{22} }&{} 0&{} {D_{21} }&{} {D_{22} }&{} 0 \\ 0&{} 0&{} {B_{66} }&{} 0&{} 0&{} {D_{66} } \\ \end{array} }} \right] \left\{ {\begin{array}{l} \varepsilon _x \\ \varepsilon _\theta \\ \gamma _{x\theta } \\ \kappa _x \\ \kappa _\theta \\ \kappa _{x\theta } \\ \end{array}} \right\} , \quad \left\{ {\begin{array}{l} Q_x \\ Q_\theta \\ \end{array}} \right\} \\&\quad =\left[ {{\begin{array}{ll} {E_{44} }&{} 0 \\ 0&{} {E_{55} } \\ \end{array} }} \right] \left\{ {{\begin{array}{l} {\gamma _{xz} } \\ {\gamma _{\theta z} } \\ \end{array} }} \right\} ,\\&(A_{ij} , B_{ij} , D_{ij} )\!=\!\int _{-\frac{h}{2}}^{\frac{h}{2}} {Q_{ij} } (1,z,z^{2})dz\, (i,j\!=\!1,2,6), E_{44}\\&\quad =\int _{-\frac{h}{2}}^{\frac{h}{2}} {Q_{\hbox {55}} } dz , E_{55} =\int _{-\frac{h}{2}}^{\frac{h}{2}} {Q_{\hbox {44}} } dz, \end{aligned}$$

where the effective elasticity coefficients \(Q_{ij} (z)\) of the FG cylindrical shell are given

$$\begin{aligned} Q_{11}= & {} C_{11}, \quad Q_{12} =C_{12} /A, \quad Q_{21} =C_{21}, \quad Q_{22}\\&=C_{22} /A, \quad Q_{66} =C_{55} /A,\\ Q_{44}= & {} \kappa _G C_{44},\quad Q_{55} =Q_{44} /A, \quad A=1+z/R. \end{aligned}$$

A shear correction factor (\(\kappa _G )\) of \(\frac{5}{6}\) is used during the evaluation of \(E_{44} \) and \(E_{55} \) [34].

Appendix 3

$$\begin{aligned} L_{11}= & {} A_{11} \frac{\partial ^{2}}{\partial x^{2}}+\frac{1}{R^{2}}A_{66} \frac{\partial ^{2}}{\partial \theta ^{2}},\\ L_{12}= & {} \frac{A_{12} +A_{66} }{R}\frac{\partial ^{2}}{\partial x\partial \theta },\quad L_{13} =\frac{A_{12} }{R}\frac{\partial }{\partial x},\\ L_{16}= & {} L_{11},\quad L_{14} =B_{11} \frac{\partial ^{2}}{\partial x^{2}}+\frac{B_{66} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}, \\ L_{15}= & {} \frac{B_{12} +B_{66} }{R}\frac{\partial ^{2}}{\partial x\partial \theta },\\ L_{17}= & {} \frac{L_{12} }{R}, \quad L_{21} =\frac{A_{66} +A_{12} }{R}\frac{\partial ^{2}}{\partial x\partial \theta },\\ L_{22}= & {} A_{66} \frac{\partial ^{2}}{\partial x^{2}}+\frac{A_{22} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}-\frac{E_{55} }{R^{2}},\\ L_{23}= & {} \frac{A_{22} +E_{55} }{R^{2}}\frac{\partial }{\partial \theta },\\ L_{24}= & {} \frac{B_{66} +B_{12}}{R}\frac{\partial ^{2}}{\partial x\partial \theta }, \\ L_{25}= & {} B_{66} \frac{\partial ^{2}}{\partial x^{2}}+\frac{B_{22} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}+\frac{E_{55} }{R},\\ L_{26}= & {} L_{21},\quad L_{27} =\frac{A_{66} }{R}\frac{\partial ^{2}}{\partial x^{2}}+\frac{A_{22} }{R^{3}}\frac{\partial ^{2}}{\partial \theta ^{2}},\\ L_{31}= & {} -\frac{A_{21} }{R}\frac{\partial }{\partial x},\\ L_{32}= & {} -\frac{E_{55} }{R^{2}}\frac{\partial }{\partial \theta }-\frac{A_{22} }{R^{2}}\frac{\partial }{\partial \theta },\\ L_{33}= & {} E_{44} \frac{\partial ^{2}}{\partial x^{2}}+\frac{E_{55} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}-\frac{A_{22} }{R^{2}},\\ L_{34}= & {} E_{44} \frac{\partial }{\partial x}-\frac{B_{21} }{R}\frac{\partial }{\partial x}, \\ L_{35}= & {} \frac{E_{55} }{R}\frac{\partial }{\partial \theta }-\frac{B_{22} }{R^{2}}\frac{\partial }{\partial \theta },\\ L_{36}= & {} -\frac{A_{21} }{2R}\frac{\partial }{\partial x}, \quad L_{37} =-\frac{A_{22} }{2R^{3}}\frac{\partial }{\partial \theta },\\ L_{41}= & {} B_{11} \frac{\partial ^{2}}{\partial x^{2}}+\frac{B_{66} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}, \quad L_{42} =\frac{B_{12} +B_{66} }{R}\frac{\partial ^{2}}{\partial x\partial \theta },\\ L_{43}= & {} \left( \frac{B_{12} }{R}-E_{44} \right) \frac{\partial }{\partial x},\\ L_{44}= & {} D_{11} \frac{\partial ^{2}}{\partial x^{2}}+\frac{D_{66} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}-E_{44}, \\ L_{45}= & {} \frac{D_{12} +D_{66} }{R}\frac{\partial ^{2}}{\partial x\partial \theta },\\ L_{46}= & {} L_{41} , L_{47} =\frac{L_{42} }{R},\\ L_{51}= & {} \frac{B_{66} +B_{12} }{R}\frac{\partial ^{2}}{\partial x\partial \theta },\\ L_{52}= & {} B_{66} \frac{\partial ^{2}}{\partial x^{2}}+\frac{B_{22} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}+\frac{E_{55} }{R},\\ L_{53}= & {} \frac{B_{22} -E_{55} R}{R^{2}}\frac{\partial }{\partial \theta }, \\ L_{54}= & {} \frac{D_{12} +D_{66} }{R}\frac{\partial ^{2}}{\partial x\partial \theta }, \quad L_{55} =\frac{D_{22} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}\\&\,-E_{55} +D_{66} \frac{\partial ^{2}}{\partial x^{2}},\\ L_{56}= & {} L_{51},\quad L_{57} =\frac{B_{66} }{R}\frac{\partial ^{2}}{\partial x^{2}}+\frac{B_{22} }{R^{2}}\frac{\partial ^{2}}{\partial \theta ^{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, G.G., Wang, X. The non-linear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dyn 87, 1095–1109 (2017). https://doi.org/10.1007/s11071-016-3100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3100-y

Keywords

Navigation