Skip to main content
Log in

Updated numerical integration method for stability calculation of Mathieu equation with various time delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 16 January 2017

Abstract

The determination of the stability of systems with time delays is of high importance in many industrial and research applications. In this study, we improve the numerical integration method (NIM) by using the Lagrange form interpolating polynomial to approximate the delayed terms and construct a periodic discrete dynamical map for the damped Mathieu equation with time delays. Hence, we can obtain the Floquet transition matrices without matrix multiplication, which can reduce calculation time when the matrix inversed has a small bandwidth according to the computation based on MATLAB. To compare the calculation efficiency and computational accuracy between the updated and original methods, we compare the stability charts calculated by using three NIM methods for a damped Mathieu equation with multiple delays. To further confirm the efficiency of the presented method, we calculate the stability of the Mathieu equation with distributed delays and time-periodic delays, and then we compare the computational accuracy and calculation time with those of the semi-discretization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags, vol. 23. Academic Press, London (1966)

    MATH  Google Scholar 

  2. Hale, J.K.: Functional Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  3. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations, vol. 99. Springer, Berlin (2013)

    MATH  Google Scholar 

  4. Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.: Delay Differential Equations: Recent Advances and New Directions. Springer, New York (2009)

    MATH  Google Scholar 

  5. Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific & Technical New York, New York (1989)

    MATH  Google Scholar 

  6. Insperger, T., Stépán, G.: Semi-discretization for Time-Delay systems: Stability and Engineering Applications, vol. 178. Springer, Berlin (2011)

    MATH  Google Scholar 

  7. Diekmann, O., Van Gils, S.A., Lunel, S.M., Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis, vol. 110. Springer, Berlin (2012)

    MATH  Google Scholar 

  8. Olgac, N., Sipahi, R.: Dynamics and stability of variable-pitch milling. J. Vib. Control 13(7), 1031–1043 (2007)

    Article  MATH  Google Scholar 

  9. Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng. Trans. ASME 125(2), 220–225 (2003)

    Article  Google Scholar 

  10. Insperger, T., Stepan, G.: Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng. 55(5), 503–518 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 61(1), 117–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, Y., Zhu, L., Zhang, X., Ding, H.: A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf. 50(5), 502–509 (2010)

    Article  Google Scholar 

  13. Merdol, S.D., Altintas, Y.: Multi frequency solution of chatter stability for low immersion milling. J. Manuf. Sci. Eng. Trans. ASME 126(3), 459–466 (2004)

    Article  Google Scholar 

  14. Butcher, E.A., Ma, H., Bueler, E., Averina, V., Szabo, Z.: Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int. J. Numer. Methods Eng. 59(7), 895–922 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, Y., Zhu, L.M., Zhang, X.J., Ding, H.: Numerical integration method for prediction of milling stability. J. Manuf. Sci. Eng. 133(3), 031005 (2011)

    Article  Google Scholar 

  16. Ding, Y., Zhu, L., Zhang, X., Ding, H.: Stability analysis of milling via the differential quadrature method. J. Manuf. Sci. Eng. 135(4), 044502 (2013)

    Article  Google Scholar 

  17. Baker, C.T., Paul, C.A., Willé, D.R.: A bibliography on the numerical solution of delay differential equations. Numerical Analysis Report No. 269, Mathematics Department, University of Manchester, UK (1995)

  18. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(1), 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruby, L.: Applications of the Mathieu equation. Am. J. Phys. 64(1), 39–44 (1996)

    Article  MathSciNet  Google Scholar 

  20. Gutiérrez-Vega, J.C., Rodrıguez-Dagnino, R., Meneses-Nava, M., Chávez-Cerda, S.: Mathieu functions, a visual approach. Am. J. Phys. 71(3), 233–242 (2003)

    Article  Google Scholar 

  21. Insperger, T., Stépán, G.: Stability of the damped Mathieu equation with time delay. J. Dyn. Syst. Measur. Control 125(2), 166–171 (2003)

    Article  Google Scholar 

  22. Insperger, T., Stepan, G.: Stability analysis of turning with periodic spindle speed modulation via semidiscretization. J. Vib. Control 10(12), 1835–1855 (2004)

    Article  MATH  Google Scholar 

  23. Insperger, T., Stepan, G., Turi, J.: On the higher-order semi-discretizations for periodic delayed systems. J. Sound Vib. 313(1–2), 334–341 (2008)

    Article  Google Scholar 

  24. Wan, M., Zhang, W., Dang, J., Yang, Y.: A unified stability prediction method for milling process with multiple delays. Int. J. Mach. Tools Manuf. 50(1), 29–41 (2010)

    Article  Google Scholar 

  25. Kline, W., DeVor, R.: The effect of runout on cutting geometry and forces in end milling. Int. J. Mach. Tool Des. Res. 23(2–3), 123–140 (1983)

    Article  Google Scholar 

  26. Shirase, K., Altintaş, Y.: Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills. Int. J. Mach. Tools Manuf. 36(5), 567–584 (1996)

    Article  Google Scholar 

  27. Sims, N.D., Mann, B., Huyanan, S.: Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J. Sound Vib. 317(3–5), 664–686 (2008)

    Article  Google Scholar 

  28. Zhang, X.J., Xiong, C.H., Ding, Y., Xiong, Y.L.: Variable-step integration method for milling chatter stability prediction with multiple delays. Sci. China Ser. E Technol. Sci. 54(12), 3137–3154 (2011)

    Article  MATH  Google Scholar 

  29. Yusoff, A.R., Sims, N.D.: Optimisation of variable helix tool geometry for regenerative chatter mitigation. Int. J. Mach. Tools Manuf. 51(2), 133–141 (2011)

    Article  Google Scholar 

  30. Olgac, N., Sipahi, R.: A unique methodology for chatter stability mapping in simultaneous machining. J. Manuf. Sci. Eng. 127(4), 791–800 (2005)

    Article  Google Scholar 

  31. Reith, M.J., Bachrathy, D., Stepan, G.: Stability properties and optimization of multi-cutter turning operations. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V07BT10A061-V07BT10A061 (2013)

  32. Gu, K., Niculescu, S.-I.: Survey on recent results in the stability and control of time-delay systems*. J. Dyn. Syst. Measur. Control 125(2), 158–165 (2003)

    Article  Google Scholar 

  33. Lehotzky, D., Turi, J., Insperger, T.: Stabilizability diagram for turning processes subjected to digital PD control. Int. J. Dyn. Control 2(1), 46–54 (2014)

    Article  Google Scholar 

  34. Zatarain, M., Bediaga, I., Munoa, J., Lizarralde, R.: Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. CIRP Ann. Manuf. Technol. 57(1), 379–384 (2008)

    Article  Google Scholar 

  35. Seguy, S., Insperger, T., Arnaud, L., Dessein, G., Peigné, G.: On the stability of high-speed milling with spindle speed variation. Int. J. Adv. Manuf. Technol. 48(9–12), 883–895 (2010)

    Article  Google Scholar 

  36. Long, X., Balachandran, B., Mann, B.: Dynamics of milling processes with variable time delays. Nonlinear Dyn. 47(1), 49–63 (2007)

    MATH  Google Scholar 

  37. Insperger, T., Stepan, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47(1–3), 275–283 (2007)

    MATH  Google Scholar 

  38. Henninger, C., Eberhard, P.: Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. Eur. J. Mech. A Solids 27(6), 975–985 (2008)

    Article  MATH  Google Scholar 

  39. Ding, Y., Zhu, L.M., Zhang, X.J., Ding, H.: Second-order full-discretization method for milling stability prediction. Int. J. Mach. Tools Manuf. 50(10), 926–932 (2010)

  40. Ding, Y., Zhu, L., Zhang, X., Ding, H.: Spectral method for prediction of chatter stability in low radial immersion milling. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4359–4363 (2011)

  41. Huang, T., Zhang, X., Zhang, X., Ding, H.: An efficient linear approximation of acceleration method for milling stability prediction. Int. J. Mach. Tools Manuf. 74, 56–64 (2013)

    Article  Google Scholar 

  42. Ding, Y., Zhang, X., Ding, H.: A legendre polynomials based method for stability analysis of milling processes. J. Vib. Acoust. 137(2), 024504 (2014)

    Article  Google Scholar 

  43. Niu, J., Ding, Y., Zhu, L., Ding, H.: Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn. 76(1), 289–304 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. In: Proceedings of the ASME Design Engineering Technical Conference, pp. 2361–2370 (2001)

  45. Insperger, T.: Full-discretization and semi-discretization for milling stability prediction: some comments. Int. J. Mach. Tools Manuf. 50(7), 658–662 (2010)

    Article  MathSciNet  Google Scholar 

  46. Zhang, X.J., Xiong, C.H., Ding, Y.: Improved full-discretization method for milling chatter stability prediction with multiple delays. Intelligent Robotics and Applications, pp. 541–552 (2010)

  47. Farkas, M.: Periodic Motions. Springer, New York (1994)

    Book  MATH  Google Scholar 

  48. Ding, Y., Niu, J., Zhu, L., Ding, H.: Differential quadrature method for stability analysis of dynamic systems with multiple delays: application to simultaneous machining operations. J. Vib. Acoust. 137(2), 024501 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 51305151, 51535004, 51025518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Hua Xiong.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11071-017-3331-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.J., Xiong, C.H., Ding, Y. et al. Updated numerical integration method for stability calculation of Mathieu equation with various time delays. Nonlinear Dyn 87, 2077–2095 (2017). https://doi.org/10.1007/s11071-016-3096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3096-3

Keywords

Navigation