Skip to main content
Log in

An efficient cubic spline approximation for variable-order fractional differential equations with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes a robust, accurate and efficient scheme based on a cubic spline interpolation. The proposed scheme is applied to approximate variable-order fractional integrals and is extended to solve a class of nonlinear variable-order fractional equations with delay. Modified Hutchinson equation and delay Ikeda equation are solved using the proposed scheme. The efficiency and accuracy of the proposed method are analyzed in the perspective of the mean absolute error and experimental convergence order. Numerical results confirm the accuracy and efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). doi:10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  MATH  Google Scholar 

  2. Ferreira, N.M.F., Machado, J.A.T.: Math. Methods Eng. Springer, Netherlands (2014). doi:10.1007/978-94-007-7183-3

    Google Scholar 

  3. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Netherlands (2010). doi:10.1007/978-90-481-3293-5

    Book  MATH  Google Scholar 

  4. Li, K., Maione, G., Fei, M., Gu, X.: Recent advances on modeling, control, and optimization for complex engineering systems. Math. Probl. Eng. 2015, 1–1 (2015). doi:10.1155/2015/746729

    Google Scholar 

  5. Oustaloup, A., Levron, F.M.B.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans CAS-I 47(1), 25–39 (2000). doi:10.1109/81.817385

    Article  Google Scholar 

  6. David, S.A., Machado, J.A.T., Quintino, D.D., Balthazar, J.M.: Partial chaos suppression in a fractional order macroeconomic model. Math. Comput. Simul. 122, 55–68 (2016). doi:10.1016/j.matcom.2015.11.004

    Article  MathSciNet  Google Scholar 

  7. Gutiérrez-Carvajal, R.E., de Melo, L.F., Rosário, J.M., Machado, J.T.: Condition-based diagnosis of mechatronic systems using a fractional calculus approach. Int. J. Syst. Sci. 47(9), 2169–2177 (2014). doi:10.1080/00207721.2014.978833

    Article  MATH  Google Scholar 

  8. Lopes, A.M., Machado, J.A.T.: Integer and fractional-order entropy analysis of earthquake data serie. Nonlinear Dyn. 84(1), 79–90 (2016). doi:10.1007/s11071-015-2231-x

    Article  MathSciNet  Google Scholar 

  9. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Annalen der Physik 12(11–12), 692–703 (2003). doi:10.1002/andp.200310032

    Article  MathSciNet  MATH  Google Scholar 

  10. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der pol equation. Nonlinear Dyn. 56(1–2), 145–157 (2009). doi:10.1007/s11071-008-9385-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Ramirez, L.E.S., Coimbra, C.F.M.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Phys. D-Nonlinear Phenom. 240(13), 1111–1118 (2011). doi:10.1016/j.physd.2011.04.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Ingman, D., Suzdalnitsky, J.: Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193(52), 5585–5595 (2004). doi:10.1016/j.cma.2004.06.029

    Article  MathSciNet  MATH  Google Scholar 

  13. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Annalen der Physik 14(6), 378–389 (2005). doi:10.1002/andp.200410140

    Article  MATH  Google Scholar 

  14. Ramirez, L.E.S., Coimbra, C.F.M.: A variable order constitutive relation for viscoelasticity. Annalen der Physik 16(7–8), 543–552 (2007). doi:10.1002/andp.200710246

    Article  MathSciNet  MATH  Google Scholar 

  15. Sheng, Y.C.H., Sun, H., Qiu, T.: Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process. 91(7), 1645–1650 (2011). doi:10.1016/j.sigpro.2011.01.010

    Article  MATH  Google Scholar 

  16. Ostalczyk, P., Rybicki, T.: Variable-fractional-order dead-beat control of an electromagnetic servo. J. Vib. Control 4(9–10), 1457–1471 (2008). doi:10.1177/1077546307087437

    Article  MathSciNet  Google Scholar 

  17. Orosco, J., Coimbra, C.F.M.: On the control and stability of variable-order mechanical systems. Nonlinear Dyn. 1–16 (2016). doi:10.1007/s11071-016-2916-9

  18. Samko, S.G.: Fractional integration and differentiation of variable order. Ann. Math. 21(3), 213–236 (1995). doi:10.1007/BF01911126

    MathSciNet  MATH  Google Scholar 

  19. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dynam. 29(1–4), 57–98 (2002). doi:10.1023/A:1016586905654

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramirez, L.E.S., Coimbra, C.F.M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, 1–16 (2010). doi:10.1155/2010/846107

    MathSciNet  MATH  Google Scholar 

  21. Lifshits, M., Linde, W.: Fractional integration operators of variable order: continuity and compactness properties. Mathematische Nachrichten 287(8–9), 980–1000 (2013). doi:10.1002/mana.201200337

    MathSciNet  MATH  Google Scholar 

  22. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Spec. Funct. 1(4), 277–300 (1993). doi:10.1080/10652469308819027

    Article  MathSciNet  MATH  Google Scholar 

  23. Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dynam. 71(4), 653–662 (2013). doi:10.1007/s11071-012-0485-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheng, H., Sun, H., Coopmans, C., Chen, Y., Bohannan, G.W.: Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 193(1), 93–104 (2011). doi:10.1140/epjst/e2011-01384-4

    Article  Google Scholar 

  25. Tavares, D., Almeida, R., Torres, D.F.M.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016). doi:10.1016/j.cnsns.2015.10.027

    Article  MathSciNet  Google Scholar 

  26. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order caputo fractional functional differential equation. Nonlinear Dyn, 1–9 (2016). doi:10.1007/s11071-016-2797-y

  27. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynam. 80(1–2), 101–116 (2015). doi:10.1007/s11071-014-1854-7

    Article  MathSciNet  MATH  Google Scholar 

  28. Babakhani, A., Baleanu, D., Khanbabaie, R.: Hopf bifurcation for a class of fractional dierential equations with delay. Nonlinear Dynam. 69(3), 101–116 (2012). doi:10.1007/s11071-011-0299-5

    Article  MATH  Google Scholar 

  29. Gao, Z.: A graphic stability criterion for non-commensurate fractional-order time-delay systems. Nonlinear Dynam. 78(3), 2101–2111 (2014). doi:10.1007/s11071-014-1580-1

  30. Moghaddam, B.P., Mostaghim, Z.S.: A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations. Ain Shams Eng. J. 5(2), 585–594 (2014). doi:10.1016/j.asej.2013.11.007

    Article  Google Scholar 

  31. Moghaddam, B.P., Mostaghim, Z.S.: Modified finite difference method for solving fractional delay differential equations. Boletim da Sociedade Paranaense de Matemtica 35(2), 49–58 (2016). doi:10.5269/bspm.v35i2.25081

    Article  Google Scholar 

  32. Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131(7), 763–767 (2005). doi:10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  33. Sun, H.W.H.G., Chen, W., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Special Topics Perspectives on Fractional. Dynam. Control 193(185), 185–192 (2011). doi:10.1140/epjst/e2011-01390-6

    Google Scholar 

  34. Moghaddam, B.P., Machado, J.A.T.: A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. (2016). doi:10.1016/j.camwa.2016.07.010

  35. Moghaddam, B.P., Yaghoobi, S., Machado, J.A.T.: An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6), 061001 (2016). doi:10.1115/1.4032574

    Article  Google Scholar 

  36. Kosko, B.: Bidirectional associative memories. IEEE Trans. Syst. Man. Cybern. 18(1), 49–60 (1988). doi:10.1109/21.87054

    Article  MathSciNet  Google Scholar 

  37. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977). doi:10.1126/science.267326

    Article  Google Scholar 

  38. Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos 16(1), 013133 (2006). doi:10.1063/1.2178448

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, Z., Xu, W., Yang, X., Fang, T.: nducing or suppressing chaos in a double-well duffing oscillator by time delay feedback. Chaos Solitons Fractals 27(3), 705–714 (2006). doi:10.1016/j.chaos.2005.04.041

    Article  MATH  Google Scholar 

  40. Li, L., Peng, H., Yang, Y., Wang, X.: On the chaotic synchronization of Lorenz systems with time-varying lags. Chaos Solitons Fractals 41(2), 783–794 (2006). doi:10.1016/j.chaos.2008.03.014

  41. Chua, L., Yang, L.I.N.: Cellular neural network: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, J.: Global synchronization criteria with channel time delay for chaotic time-delay systems. Chaos Solitons Fractals 21(4), 967–975 (2004). doi:10.1016/j.chaos.2003.12.055

    Article  MathSciNet  MATH  Google Scholar 

  43. Lu, H., He, Z.: Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE Trans. Circuits Syst. I 43(8), 700–702 (1996). doi:10.1109/81.526689

    Article  Google Scholar 

  44. Sun, J., Zhang, Y., Liu, Y., Deng, F.: Exponential stability of interval dynamical system with multidelay. Appl. Math. Mech. 23(1), 95–99 (2002). doi:10.1007/bf02437735

    Article  MathSciNet  MATH  Google Scholar 

  45. Samiei, E., Torkamani, S., Butcher, E.A.: On Lyapunov stability of scalar stochastic time-delayed systems. Int. J. Dynam. Control 1(1), 64–80 (2013)

    Article  Google Scholar 

  46. Torkamani, S., Samiei, E., Bobrenkov, O., Butcher, E.A.: Numerical stability analysis of linear stochastic delay differential equations using chebyshev spectral continuous time approximation. Int. J. Dynam. Control 2(2), 210–220 (2014)

    Article  Google Scholar 

  47. Hutchinson, G.E.: Circular causal systems in ecology. Ann. N.Y. Acad. Sci. 50, 221–246 (1948). doi:10.1111/j.1749-6632.1948.tb39854.x

    Article  Google Scholar 

  48. Ruan, S.: Delay differential equations in single species dynamics (2006). doi:10.1007/1-4020-3647-7-11

  49. Strogatz, S.H., Fox, R.F.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. Phys. Today 48(3), 93 (1995). doi:10.1063/1.2807947

    Article  Google Scholar 

  50. Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: Chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45(9), 709–712 (1980). doi:10.1103/PhysRevLett.45.709

    Article  Google Scholar 

  51. Ikeda, K., Matsumoto, M.: Study of a high-dimensional chaotic attractor. J. Stat. Phys. 44(5–6), 955–983 (1986). doi:10.1007/BF01011917

    Article  MathSciNet  MATH  Google Scholar 

  52. Ikeda, K., Matsumoto, M.: High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D 29(1–2), 223–235 (1987). doi:10.1016/0167-2789(87)90058-3

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Parsa Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoobi, S., Moghaddam, B.P. & Ivaz, K. An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn 87, 815–826 (2017). https://doi.org/10.1007/s11071-016-3079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3079-4

Keywords

Mathematics Subject Classification

Navigation