Skip to main content
Log in

Estimation of exact initial states of fractional order systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The initial condition problem of fractional order systems is investigated in this paper. Firstly, a named aberration phenomenon is introduced, which reveals the nature of initial condition problem. And then, in order to interpret this odd phenomenon, definitions of the Riemann–Liouville derivative and Caputo derivative are revisited. As a result, the fractional order systems described by fractional differential equations and exact state-space models are linked much more closely, and it is found that relationship between these two kinds of models basically lies in the exact initial state distribution. The results also show the inborn defects of these two derivatives. Afterward, a practical method to estimate the exact initial states is studied naturally. At last, several simulation examples carefully illustrate the effectiveness of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D.Y., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

    Book  MATH  Google Scholar 

  2. Oustaloup, A.: Diversity and Non-integer Differentiation for System Dynamics. Wiley, London (2014)

    Book  MATH  Google Scholar 

  3. Hartley, T.T., Lorenzo, C.F.: Fractional-order system identification based on continuous order-distributions. Sig. Process. 83(11), 2287–2300 (2003)

    Article  MATH  Google Scholar 

  4. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lu, J.G., Chen, Y.Q.: Robust stability and stabilization of fractional-order interval systems with the fractional order \(\alpha \): the \(0< \alpha < 1\) case. IEEE Trans. Autom. Control 55(1), 152–158 (2010)

    Article  MathSciNet  Google Scholar 

  6. Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78(3), 2129–2140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, X.Y., He, Y.J.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372(4), 435–441 (2008)

    Article  MATH  Google Scholar 

  8. Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009)

    Article  MATH  Google Scholar 

  9. Wang, X.Y., Zhang, X.P., Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69(1–2), 511–517 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, Y., Chen, Y.Q.: Stabilizing and robust fractional order pi controller synthesis for first order plus time delay systems. Automatica 48(9), 2159–2167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wei, Y.H., Chen, Y.Q., Liang, S., Wang, Y.: A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing 165, 395–402 (2015)

    Article  Google Scholar 

  12. Wang, X.Y., Wang, M.J.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos Interdiscipl. J. Nonlinear Sci. 17(3), 033,106 (2007)

    Article  Google Scholar 

  13. Wang, X.Y., He, Y.J., Wang, M.J.: Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal. Theory Methods Appl. 71(12), 6126–6134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, C., Wang, X.: Chaos in the fractional-order complex lorenz system and its synchronization. Nonlinear Dyn. 71(1–2), 241–257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartley, T.T., Lorenzo, C.F., Trigeassou, J.C., Maamri, N.: Equivalence of history-function based and infinite-dimensional-state initializations for fractional-order operators. J. Comput. Nonlinear Dyn. 8(4), 041,014 (2013)

    Article  Google Scholar 

  16. Fukunaga, M., Shimizu, N.: Role of prehistories in the initial value problems of fractional viscoelastic equations. Nonlinear Dyn. 38(1–4), 207–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caputo, M.: Elasticità E Dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  19. Hartley, T.T., Lorenzo, C.F.: Insights into the initialization of fractional order operators via Semi-Infinite lines. NASA TM-208407 (1998)

  20. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29(1–4), 201–233 (2002)

  21. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15(5), 1318–1326 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trigeassou, J.C., Maamri, N.: Initial conditions and initialization of linear fractional differential equations. Sig. Process. 91(3), 427–436 (2011)

    Article  MATH  Google Scholar 

  23. Trigeassou, J.C., Maamri, N., Oustaloup, A.: Initialization of Riemann–Liouville and Caputo fractional derivatives. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 219–226. Washington, USA (2011)

  24. Podlubny, I.: Fractional Differential Equations: An Introduction to Fraction Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  25. Du, M.L., Wang, Z.H.: Initialized fractional differential equations with Riemann–Liouville fractional-order derivative. Eur. Phys. J. Spec. Top. 193(1), 49–60 (2011)

    Article  Google Scholar 

  26. Xu, Q.S.: Piezoelectric nanopositioning control using second-order discrete-time terminal sliding-mode strategy. IEEE Trans. Industr. Electron. 62(12), 7738–7748 (2015)

    Article  Google Scholar 

  27. Xu, Q.S.: Digital integral terminal sliding mode predictive control of piezoelectric-driven motion system. IEEE Trans. Industr. Electron. 63(6), 3976–3984 (2016)

    Article  Google Scholar 

  28. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: Transients of fractional-order integrator and derivatives. Signal Image Video Process. 6(3), 359–372 (2012)

    Article  MATH  Google Scholar 

  29. Montseny, G.: Diffusive representation of pseudo-differential time-operators. In: Proceedings of the Fractional Differential System: Models. Methods and Applications, pp. 159–175. Toulouse, France (1998)

  30. Liang, S., Peng, C., Liao, Z., Wang, Y.: State space approximation for general fractional order dynamic systems. Int. J. Syst. Sci. 45(10), 2203–2212 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant No. 61573332 and the Fundamental Research Funds for the Central Universities No. WK2100100028.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, B., Wei, Y., Liang, S. et al. Estimation of exact initial states of fractional order systems. Nonlinear Dyn 86, 2061–2070 (2016). https://doi.org/10.1007/s11071-016-3015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3015-7

Keywords

Navigation