Skip to main content

The Initial Problem for a Discrete, Scalar Fractional Order System

  • Conference paper
  • First Online:
Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques (AUTOMATION 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1427))

Included in the following conference series:

  • 346 Accesses

Abstract

In the paper the initial problem for a scalar, discrete, fractional order system is addressed. The fractional operator is expressed using Continuous Fraction Expansion approximation. Results are illustrated by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  2. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional order systems: modeling and control applications. In: Chua, L.O. (ed.) World Scientific Series on Nonlinear Science, pp. 1–178. University of California, Berkeley (2010)

    Google Scholar 

  3. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 263–269 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Das, S.: Functional Fractional Calculus for System Identyfication and Control. Springer, Berlin (2010)

    Google Scholar 

  5. Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  6. Gal, C.G., Warma, M.: Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evol. Equ. Control Theory 5(1), 61–103 (2016)

    Article  MathSciNet  Google Scholar 

  7. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)

    Book  Google Scholar 

  8. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)

    MATH  Google Scholar 

  9. Mozyrska, D., Pawluszewicz, E.: Fractional discrete-time linear control systems with initialisation. Int. J. Control 1(1), 1–7 (2011)

    MATH  Google Scholar 

  10. Obrączka, A.: Control of heat processes with the use of non-integer models. Ph.D. thesis, AGH University, Krakow, Poland (2014)

    Google Scholar 

  11. Oprzędkiewicz, K., Mitkowski, W.: A memory efficient non integer order discrete time state space model of a heat transfer process. Int. J. Appl. Math. Comput. Sci. 28(4), 649–659 (2018)

    Article  MathSciNet  Google Scholar 

  12. Oprzędkiewicz, K., Stanisławski, R., Gawin, E., Mitkowski, W.: A new algorithm for a CFE approximated solution of a discrete-time non integer-order state equation. Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 429–437 (2017)

    Google Scholar 

  13. Ostalczyk, P.: Discrete Fractional Calculus. Applications in Control and Image Processing. World Scientific, Singapore (2016)

    Google Scholar 

  14. Petras, I.: Fractional order feedback control of a DC motor. J. Electr. Eng. 60(3), 117–128 (2009)

    MathSciNet  Google Scholar 

  15. Petras, I.: (2009). http://people.tuke.sk/igor.podlubny/usu/matlab/petras/dfod2.m

  16. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Sierociuk, D., et al.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257(1), 2–11 (2015)

    Google Scholar 

  18. Stanisławski, R., Latawiec, K., Łukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015(1), 1–10 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was sponsored by AGH UST project no 16.16.120.773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzędkiewicz, K. (2022). The Initial Problem for a Discrete, Scalar Fractional Order System. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2022: New Solutions and Technologies for Automation, Robotics and Measurement Techniques. AUTOMATION 2022. Advances in Intelligent Systems and Computing, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-03502-9_2

Download citation

Publish with us

Policies and ethics