Skip to main content
Log in

Consensus of second-order multi-agent systems using partial agents’ velocity measurements

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the consensus problems of multi-agent systems with different inertia and partial agents’ nonlinear velocity measurements. Firstly, based on one agent’s velocity measurements, two consensus protocols are developed to guarantee that all agents asymptotically achieve stationary consensus. Secondly, a new protocol, which needs \(n-1\) agents’ velocity measurements, rather than n, is presented such that all agents achieve consensus. Thirdly, two new consensus states, which are dependent on not only the initial positions and velocities, but also the masses and velocity gains of all agents, are obtained analytically. Numerical examples are given for three network topologies to illustrate the effectiveness of the derived algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  2. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  3. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  4. Sun, Y., Wang, L., Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Syst. Control Lett. 57(2), 175–183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hui, Q., Haddad, W.M.: Distributed nonlinear control algorithms for network consensus. Automatica 44(9), 2375–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wen, G., Duan, Z., Li, Z., Chen, G.: Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements. Int. J. Robust Nonlinear Control 22(16), 1790–1805 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, P., Jia, Y.: Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies. IEEE Trans. Autom. Control 55(3), 778–784 (2010)

    Article  MathSciNet  Google Scholar 

  8. Ren, W., Atkins, E.: Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xie, G., Wang, L.: Consensus control for a class of networks of dynamic agents. Int. J. Robust Nonlinear Control 17(10–11), 941–959 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, H., Liao, X., Huang, T.: Second-order locally dynamical consensus of multiagent systems with arbitrarily fast switching directed topologies. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 43(6), 1343–1353 (2013)

    Article  MathSciNet  Google Scholar 

  12. Li, H., Liao, X., Huang, T., Zhu, W., Liu, Y.: Second-order global consensus in multiagent networks with random directional link failure. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 565–575 (2015)

    Article  MathSciNet  Google Scholar 

  13. Cai, N., Cao, J., Ma, H.: Swarm stability analysis of nonlinear dynamical multi-agent systems via relative lyapunov function. Arab. J. Sci. Eng. 39(3), 2427–2434 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chen, K., Wang, J., Zhang, Y., Liu, Z.: Consensus of second-order nonlinear multi-agent systems under state-controlled switching topology. Nonlinear Dyn. 81(4), 1871–1878 (2015)

    Article  MathSciNet  Google Scholar 

  15. Xu, C., Zheng, Y., Su, H., Michael, Z., Zhang, C.: Cluster consensus for second-order mobile multi-agent systems via distributed adaptive pinning control under directed topology. Nonlinear Dyn. 83(4), 1975–1985 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liu, J., Ji, J., Zhou, J., Xiang, L., Zhao, L.: Adaptive group consensus in uncertain networked Euler–Lagrange systems under directed topology. Nonlinear Dyn. 82(3), 1145–1157 (2015)

    Article  MathSciNet  Google Scholar 

  17. Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst. Control Lett. 59(9), 553–562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H., Liao, X., Lei, X., Huang, T., Zhu, W.: Second-order consensus seeking in multi-agent systems with nonlinear dynamics over random switching directed networks. IEEE Trans. Circuits Syst. I 60(6), 1595–1607 (2013)

    Article  MathSciNet  Google Scholar 

  19. Li, H., Liao, X., Chen, G., Hill, D., Dong, Z., Huang, T.: Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Netw. 66, 1–10 (2015)

    Article  Google Scholar 

  20. Su, H., Chen, G., Wang, X., Lin, Z.: Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica 47(2), 368–375 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, W., Chen, G., Cao, M.: Consensus in directed networks of agents with nonlinear dynamics. IEEE Trans. Autom. Control 56(6), 1436–1441 (2011)

    Article  MathSciNet  Google Scholar 

  22. Mei, J., Ren, W., Ma, G.: Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements. Automatica 49(5), 1419–1427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, K., Xie, G., Ren, W., Wang, L.: Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies. Syst. Control Lett. 62(2), 152–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhai, S., Yang, X.: Consensus of second-order multi-agent systems with nonlinear dynamics and switching topology. Nonlinear Dyn. 77(4), 1667–1675 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, W., Zheng, W., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47(7), 1496–1503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, B., Liao, X.: Leader-following second-order consensus in multi-agent systems with sampled data via pinning control. Nonlinear Dyn. 78(1), 555–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(4), 846–850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, H., Liao, X., Huang, T., Zhu, W.: Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Trans. Autom. Control 60(7), 1908–2003 (2015)

    MathSciNet  Google Scholar 

  29. Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3–4), 209–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng, S., Ji, J., Zhou, J.: Second-order consensus of multiple non-identical agents with non-linear protocols. IET Control Theory Appl. 6(9), 1319–1324 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Y., Yang, Y.: Finite-time consensus of second-order leader-following multi-agent systems without velocity measurements. Phys. Lett. A 377(3–4), 243–249 (2013)

    Article  MATH  Google Scholar 

  32. Xu, W., Cao, J., Yu, W., Lu, J.: Leader-following consensus of non-linear multi-agent systems with jointly connected topology. IET Control Theory Appl. 8(6), 432–440 (2014)

    Article  MathSciNet  Google Scholar 

  33. Abdessameud, A., Tayebi, A.: On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst. Control Lett. 59(12), 812–821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, S., Guo, Y.: Distributed consensus filter on directed switching graphs. Int. J. Robust Nonlinear Control 25(13), 2019–2040 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Hu, L., Bai, T., Shi, P., Wu, Z.: Sampled-data control of networked linear control systems. Automatica 43(5), 903–911 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, W., Yu, L.: Stabilization of sampled-data control systems with control inputs missing. IEEE Trans. Autom. Control 55(2), 447–452 (2010)

  37. Khalil, H.K.: Nonlinear Syst. Prentice-Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 61273117), the Postdoctoral Science Foundation of Zhejiang Province (Grant No. Z42103001), the Natural Science Foundation of Zhejiang Province (Grant No. LY14F030010) and the Foundation of Anhui for Scientific Research (KJHS2015B11). The authors are very grateful to reviewers and editor for their valuable comments on which the quality of this article has been improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Yu, L., Zhang, D. et al. Consensus of second-order multi-agent systems using partial agents’ velocity measurements. Nonlinear Dyn 86, 1927–1935 (2016). https://doi.org/10.1007/s11071-016-3005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3005-9

Keywords

Navigation