Skip to main content

Advertisement

Log in

Application of the transient proper orthogonal decomposition method for order reduction of rotor systems with faults

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The physical significance of the transient proper orthogonal decomposition (TPOD) method is proposed based on the energy of the proper orthogonal mode (POM). The POM energy can reveal the amount occupation of the dynamical characteristics of the reduced model relative to the original one. The TPOD method is compared with the traditional POD method; the bifurcation diagrams and the transition curves of POM energy are applied to verify the efficiency and accuracy of the TPOD method. On the basis of the POM energy analysis, the optimal order reduction model can be provided by the TPOD method. Two examples of the rotor-bearing systems are established by the Newton’s second law to study the physical significance of the TPOD method: One is the rotor system with pedestal looseness at one end and the other is looseness at both ends. The effects of the initial conditions (displacement and velocity) to the frequency components of the original systems and the order reduction efficiency are discussed. The variations of the frequency components can provide the guidance to the fault detections of the rotor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Muszynska, A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery-literature survey. Shock Vib. Dig. 21, 3–11 (1989)

    Article  Google Scholar 

  2. Jacquet, R.G., Torkhani, M., Cartraud, P., Thouverez, F., Baranger, T.N., Herran, M., Gibert, C., Baguet, S., Almeida, P., Peletan, L.: Rotor to stator contacts in turbomachines. Review and application. Mech. Syst. Signal Process. 40, 401–420 (2013)

    Article  Google Scholar 

  3. Khanlo, H.M., Ghayour, M., Ziaei, R.S.: Chaotic vibration analysis of rotating, flexible, continuous shaft-disk system with a rub-impact between the disk and the stator. Commun. Nonlinear Sci. Numer. Simul. 16, 566–582 (2011)

    Article  MATH  Google Scholar 

  4. Hou, L., Chen, Y.S., Cao, Q.J.: Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight. Commun. Nonlinear Sci. Numer. Simul. 19, 286–297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hou, L., Chen, Y.S., Lu, Z.Y., Li, Z.G.: Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load. Nonlinear Dyn. 81(1), 531–547 (2015)

    Article  Google Scholar 

  6. AL-Shudeifat, M.A., Butcher, E.A., Stem, C.R.: General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: Analytical and experimental approach. Int. J. Eng. Sci. 48, 921–935 (2010)

    Article  Google Scholar 

  7. AL-Shudeifat, M.A., Butcher, E.A.: New breathing functions for the transverse breathing crack of the cracked rotor system: approach for critical and subcritical harmonic analysis. J. Sound Vib. 330, 526–554 (2011)

    Article  Google Scholar 

  8. Han, Q.K., Chu, F.L.: Parametric instability of a Jeffcott rotor with rotationally asymmetric inertia and transverse crack. Nonlinear Dyn. 73, 827–842 (2013)

    Article  Google Scholar 

  9. Lees, A.W.: Misalignment in rigidly coupled rotors. J. Sound Vib. 305, 261–271 (2007)

    Article  Google Scholar 

  10. AL-Hussain, K.M., Redmond, I.: Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. J. Sound Vib. 249(3), 483–498 (2002)

    Article  Google Scholar 

  11. Li, B., Chow, M.Y., Tipsuwan, Y., Hung, J.C.: Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 47(5), 1060–1069 (2000)

    Article  Google Scholar 

  12. Rai, V.K., Mohanty, A.R.: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mech. Syst. Signal Process. 21, 2607–2615 (2007)

    Article  Google Scholar 

  13. Prabhakar, S., Mohanty, A.R., Sekhar, A.S.: Application of discrete wavelet transform for detection of ball bearing race faults. Tribol. Int. 35, 793–800 (2002)

    Article  Google Scholar 

  14. Chu, F.L., Tang, Y.: Stability and nonlinear responses of a rotor-bearing system with pedestal looseness. J. Sound Vib. 241(5), 879–893 (2001)

    Article  Google Scholar 

  15. Ma, H., Zhao, X.Y., Teng, Y.N., Wen, B.C.: Analysis of dynamic characteristics for a rotor system with pedestal looseness. Shock Vib. 18, 13–27 (2011)

    Article  Google Scholar 

  16. Ji, Z., Zu, J.W.: Method of multiple scales for vibration analysis of rotor-shaft systems with nonlinear bearing pedestal model. J. Sound Vib. 218(2), 293–305 (1998)

  17. Muszynska, A., Goldman, P.: Chaotic responses of unbalanced rotor/bearing/stator systems with looseness or rubs. Chaos Solitons Fractals 5(9), 1683–1704 (1995)

  18. Goldman, P., Muszynska, A.: Analytical and experimental simulation of loose pedestal dynamic effects on a rotating machine vibrational response. Rotating Mach. Veh. Dyn. ASME 35, 11–17 (1991)

    Google Scholar 

  19. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications, part I: theory. J. Sound Vib. 252(3), 527–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu, H., Chen, Y.S., Cao, Q.J.: Bifurcation analysis for nonlinear multi-degree-of-freedom rotor system with liquid-film lubricated bearings. Appl. Math. Mech. Eng. 34(6), 777–790 (2013)

    Article  Google Scholar 

  21. Lu, K., Yu, H., Chen, Y.S., Cao, Q.J., Hou, L.: A modified nonlinear POD method for order reduction based on transient time series. Nonlinear Dyn. 79(2), 1195–1206 (2015)

    Article  MATH  Google Scholar 

  22. Lu, K., Jin, Y.L., Chen, Y.S., Cao, Q.J., Zhang, Z.Y.: Stability analysis of reduced rotor pedestal looseness fault model. Nonlinear Dyn. 82(4), 1611–1622 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview. Nonlinear Dyn. 41, 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smith, T.R., Moehlis, J., Holmes, P.: Low-dimensional modeling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41, 275–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feeny, B.F., Kappagantu, R.: On the physical interpretation of proper orthogonal modes in vibration. J. Sound Vib. 211, 607–616 (1998)

    Article  Google Scholar 

  26. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  27. Kerschen, G., Golinval, J.C.: Physical interpretation of the proper orthogonal modes using the singular value decomposition. J. Sound Vib. 249(5), 849–865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10, 251–269 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the valuable suggestions of the editors and the reviewers. We appreciate for the support of the China Scholarship Council and the guidance of professor Sharif Rahman in the university of Iowa. The authors would also like to acknowledge the financial supports from the National Basic Research Program (973 Program) of China (Grant No. 2015CB057405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Lu.

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Chen, Y., Jin, Y. et al. Application of the transient proper orthogonal decomposition method for order reduction of rotor systems with faults. Nonlinear Dyn 86, 1913–1926 (2016). https://doi.org/10.1007/s11071-016-3004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3004-x

Keywords

Navigation