Skip to main content
Log in

Nonlinear modal interactions in composite thin-walled beam structures with simultaneous 1:2 internal and 1:1 external resonances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear dynamic characteristics of a composite aircraft wing structure modeled by a geometrically nonlinear anisotropic thin-walled beam in the presence of simultaneous 1:2 internal and 1:1 external resonances are investigated. Some prominent non-classical effects such as of transverse shear strain, warping inhibition, and three-dimensional strain are considered in the beam model. Moreover, circumferentially asymmetric stiffness lay-up configuration is adapted to generate the transverse bending-twisting elastic coupling. The solution methodology is based on the Extended Galerkin’s Method, and the method of multiple scales is applied to the system in order to obtain the equations of amplitude and modulation. Steady-state solutions and their stability are investigated. The peculiarity of the internal resonances and the conditions for saturation and jump phenomenon during the modal interactions are discussed and the commercial code ABAQUS is used to validate the theoretical results we have obtained. Finally, the prominent features of modal interactions in composite thin-walled beam structures are summarized and pertinent suggestions concerning safe design of the wing structures are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

\(a_{ij}\) :

1-D global stiffness coefficients

\(F_w, a(s)\) :

Primary and secondary warping function, respectively

L :

Length of the beam, see Fig. 1

h(k):

Thickness of the \({k}\hbox {th}\) layer of a wall

\(A_{ij}\) :

Local stretching stiffness quantities of a wall

\(B_{ij}\) :

Local bending-stretching coupling stiffness quantities of a wall

\(D_{ij}\) :

Local bending stiffness quantities of a wall

\(m_l\) :

Number of the layers in the wall, see Eqs. (12), (13)

\(\rho _{(k)}\) :

Mass density of the \(k\hbox {th}\) layer

\(I_i\) :

Inertial terms, see “Appendix 1”

(syn):

Local coordinates system for the cross section, see Fig. 2

\((u_0,v_0,w_0)\) :

Displacement component of the cross section along xyz axes, respectively, see Fig. 2

\((\theta _{x},\theta _{z},\phi )\) :

Rotation of the cross section about the x, z and y axes, respectively, see Fig. 2

\(\delta \) :

Variation operator

\({{\dot{({})}}}, {{\ddot{({})}}}\), \(({})'\) :

\(\partial ( )/\partial t\), \(\partial ^2 ( )/\partial t^2\), \(\partial ( )/\partial y\)

\({{\mathbf {X}}}^T\) :

Transpose of the matrix or vector \({\mathbf {X}}\)

\(\oint _c\), \(\int _0^L\) :

Integrals along the cross section and the span, respectively

References

  1. Ali, H.N., Walter, L.: On the discretization of spatially continuous systems with quadratic and cubic nonlinearities. JSME Int J. Ser. C 41(3), 510–531 (1998)

    Article  Google Scholar 

  2. Bhaskar, K., Librescu, L.: A geometrically non-linear theory for laminated anisotropic thin-walled beams. Int. J. Eng. Sci. 33(9), 1331–1344 (1995)

    Article  MATH  Google Scholar 

  3. Carrera, E., Filippi, M., Mahato, P.K., Pagani, A.: Advanced models for free vibration analysis of laminated beams with compact and thin-walled open/closed sections. J. Compos. Mater. 49, 2085–2101 (2015)

  4. Chandra, R., Stemple, A.D., Chopra, I.: Thin-walled composite beams under bending torsional and externsional loads. J. Aircraft 27(7), 619–26 (1990)

    Article  Google Scholar 

  5. Cortinez, V., Piovan, M.: Vibration and buckling of composite thin-walled beams with shear deformability. J. Sound Vib. 258, 701–723 (2002)

    Article  Google Scholar 

  6. Di Egidio, A., Luongo, A., Vestroni, F.: A non-linear model for the dynamics of open cross-section thin-walled beamspart I: formulation. Int. J. Non Linear Mech. 38(7), 1067–1081 (2003)

    Article  MATH  Google Scholar 

  7. Di Egidio, A., Luongo, A., Vestroni, F.: A non-linear model for the dynamics of open cross-section thin-walled beamspart II: forced motion. Int. J. Non Linear Mech. 38(7), 1083–1094 (2003)

    Article  MATH  Google Scholar 

  8. Forster, E., Clay, S., Holzwarth, R., Pratt, D., Paul, D.: Flight vehicle composite structures. In: AIAA Paper (2008–8976) (2008)

  9. Harris, C., Starnes, J.H., Shuart, M.J.: Design and manufacturing of aerospace composite structures, state-of-the-art assessment. J. Aircraft 39(4), 545–560 (2002)

    Article  Google Scholar 

  10. Hibbitt, Karlsson, Sorensen: ABAQUS/standard User’s Manual, vol. 1. Hibbitt, Karlsson & Sorensen (2001)

  11. Hodges, D.: Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J. 41(6), 1131–1137 (2003)

    Article  Google Scholar 

  12. Ibrahim, S., Carrera, E., Petrolo, M., Zappino, E.: Buckling of composite thin walled beams by refined theory. Compos. Struct. 94, 563–570 (2012)

    Article  Google Scholar 

  13. Lacarbonara, W., Rega, G., Nayfeh, A.: Resonant non-linear normal modes. part I: analytical treatment for structural one-dimensional systems. Int. J. Non Linear Mech. 38(6), 851–872 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3(6), 465–490 (1992)

    Google Scholar 

  15. Librescu, L., Na, S.: Dyanmic response of cantilevered thin-wlled beams to blast and sonic-boom loadings. Shock. Vib. 5(1), 23–33 (1998)

    Article  Google Scholar 

  16. Librescu, L., Song, O.: Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects. Appl. Mech. Rev. 44(11), S174–80 (1991)

    Article  Google Scholar 

  17. Librescu, L., Song, O.: Thin-Walled Composite Beams: Theory and Application, pp. 213–232. Springer, New York (2006). Chap.8

    MATH  Google Scholar 

  18. Liu, M., Gorman, D.: Formulation of Rayleigh damping and its extensions. Comput. Struct. 57(2), 277–285 (1995)

    Article  MATH  Google Scholar 

  19. Luongo, A., Di Egidio, A., Paolone, A.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luongo, A., Paolone, A., Di Egidio, A.: Multiple timescales analysis for 1: 2 and 1: 3 resonant hopf bifurcations. Nonlinear Dyn. 34(3–4), 269–291 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1: 2 internal resonance. J. Sound Vib. 214(5), 915–940 (1998)

    Article  Google Scholar 

  22. Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1: 2 internal resonance. J. Vib. Control 14(1–2), 135–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008)

    Article  Google Scholar 

  24. Meirovitch, L.: Principles and Techniques of Vibrations. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  25. Mohammad, D., Khan, N., Ramamurti, V.: On the role of Rayleigh damping. J. Sound Vib. 185(2), 207–218 (1995)

    Article  Google Scholar 

  26. Nayfeh, A.: Introduction to Perturbation Techniques. Wiley, NY (1981)

    MATH  Google Scholar 

  27. Nayfeh, A.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods. Wiley, New York (2000). Wiley Series in Nonlinear Science

  28. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, NY (1979)

    MATH  Google Scholar 

  29. Palazotto, A., Linnemann, P.: Vibration and buckling characteristics of com-posite cylindrical panels incorporating the effects of a higher order shear theory. Int. J. Solids Struct. 28(3), 341–361 (1991)

    Article  Google Scholar 

  30. Patil, M., Hodges, D.: Flight dynamics of highly flexible flying wings. J. Aircraft 43(6), 1790–1799 (2006)

  31. Qin, Z., Librescu, L.: On a shear-deformable theory of anisotropic thin-walled beams: further contribution and validation. Compos. Struct. 56(4), 345–358 (2002)

    Article  Google Scholar 

  32. Raville, M., Ueng, C.: Determination of natural frequencies of vibration of a sandwich plate. Exp. Mech. 7, 490–493 (1967)

    Article  Google Scholar 

  33. Smith, E., Chopra, I.: Formulation and evaluation of an analytical model for composite box-beams. J. Am. Helicopter Soc. 36(3), 23–35 (1991)

    Article  Google Scholar 

  34. Song, O., Librescu, L.: Free vibration of anisotropic composite thin-walled beams of closed cross-section contour. J. Sound Vib. 167(1), 129–47 (1993)

    Article  MATH  Google Scholar 

  35. Srinil, N., Rega, G., Chucheepsakul, S.: Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. part I: theoretical formulation and model validation. Nonlinear Dyn. 48(3), 231–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Trombetti, T., Silvestri, S.: On the modal damping ratios of shear-type structures equipped with Rayleigh damping systems. J. Sound Vib. 292(1), 21–58 (2006)

    Article  Google Scholar 

  37. Varello, A., Carrera, E.: Free vibration response of thin and thick nonhomogeneous shells by refined one-dimensional analysis. J. Vib. Acoust. 136(6), 061001 (2014)

    Article  Google Scholar 

  38. Vo, T.P., Lee, J.: Flexural-torsional behavior of thin-walled composite box beams using shear-deformable beam theory. Eng. Struct. 30, 1958–1968 (2008)

    Article  Google Scholar 

  39. Welch, P.D.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967)

    Article  MathSciNet  Google Scholar 

  40. Yu, W., Hodges, D., Ho, J.: Variational asymptotic beam sectional analysis-an updated version. Int. J. Eng. Sci. 59, 40–64 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Appendices

Appendix 1: 1-D inertial terms

The inertial terms are defined as:

$$\begin{aligned} I_{1}= & {} \oint _C m_{0} (\ddot{u}_{0} + z{\ddot{\phi }}-x{\dot{\phi }}^2-x\phi {\ddot{\phi }})\hbox {d}s=b_1{\ddot{u}}_0, \end{aligned}$$
(66)
$$\begin{aligned} I_{2}= & {} \oint _C m_{0} [\ddot{v}_{0} + x{\ddot{\theta }} _{z} + z\ddot{\theta }_{x} - F_{w}\ddot{\phi }']\hbox {d}s=b_1{\ddot{v}}_0, \end{aligned}$$
(67)
$$\begin{aligned} I_{3}= & {} \oint _C m_{0} (\ddot{w}_{0} - x{\ddot{\phi }}-z{\dot{\phi }}^2-z\phi {\ddot{\phi }} )\hbox {d}s=b_1{\ddot{w}}_0, \end{aligned}$$
(68)
$$\begin{aligned} I_{4}= & {} \oint _C m_{0} [z{\ddot{u}}_{0} + (x^2+z^2){\ddot{\phi }}-x{\ddot{w}}_0\nonumber \\&+\,x\phi {\ddot{u}}_0-z\phi {\ddot{w}}_0]\hbox {d}s\nonumber \\= & {} (b_4+b_5){\ddot{\phi }}, \end{aligned}$$
(69)
$$\begin{aligned} I_{5}= & {} \oint _C m_{0} [z{\ddot{v}}_{0} + zx{\ddot{\theta }}_z +z^{2}{\ddot{\theta }}_x - zF_{w}{\ddot{\phi }}']\hbox {d}s\nonumber \\= & {} b_4{\ddot{\theta }}_x, \end{aligned}$$
(70)
$$\begin{aligned} I_{6}= & {} \oint _C m_{0} \left[ x{\ddot{v}}_0 + x^2{\ddot{\theta }}_z + xz{\ddot{\theta }}_x - xF_{w}{\ddot{\phi }}'\right] \hbox {d}s\nonumber \\= & {} b_5{\ddot{\theta }}_z, \end{aligned}$$
(71)
$$\begin{aligned} I_{9}= & {} \oint _C m_{0} [-F_{w} {\ddot{v}}_{0}- xF_{w}{\ddot{\theta }}_z - zF_{w} {\ddot{\theta }}_x + F_{w}^{2}{\ddot{\phi }}' ]\hbox {d}s\nonumber \\= & {} b_{10}{\ddot{\phi }}', \end{aligned}$$
(72)

in which

$$\begin{aligned} m_{0}=\sum \limits _{k=1}^{m_l} \int _{h_{(k^-)}} ^{h_{(k^+)}}\rho _{(k)}\hbox {d}n. \end{aligned}$$
(73)

The inertial coefficients in Eqs. (27a–f) are defind as:

$$\begin{aligned} b_1= & {} \oint _{C} {m_{0} \hbox {d}s}, \quad (b_{4},\;b_{5} )={\oint _{C} {(z^{2}}} ,x^{2})m_{0} \hbox {d}s, \end{aligned}$$
(74)
$$\begin{aligned} b_{10}= & {} \oint _{C} m_0 F_w^2(s)\hbox {d}s. \end{aligned}$$
(75)

Appendix 2: Global stiffness quantities

The reduced stiffness coefficient\(K_{ij}\) are defined as:

$$\begin{aligned} K_{11}= & {} A_{22} - \dfrac{A_{12}^2}{A_{11}},\nonumber \\ K_{12}= & {} A_{26} - \dfrac{A_{12} A_{16}}{A_{11}}=K_{21}, \end{aligned}$$
(76)
$$\begin{aligned} K_{13}= & {} \Bigl (A_{26} - \dfrac{A_{12} A_{16}}{A_{11}}\Bigr )\psi (s) \nonumber \\&+\,2 \Big ( B_{26}-\dfrac{A_{12}B_{16}}{A_{11}} \Big ),\end{aligned}$$
(77)
$$\begin{aligned} K_{14}= & {} B_{22} - \dfrac{A_{12} B_{12}}{A_{11}}=K_{41},\nonumber \\ K_{22}= & {} A_{66} - \dfrac{A_{16}^{2}}{A_{11}}, \end{aligned}$$
(78)
$$\begin{aligned} K_{23}= & {} \Bigl (A_{66} - \dfrac{A_{16}^{2}}{A_{11}}\Bigr )\psi (s)\nonumber \\&+\,2 \Big ( B_{66} -\dfrac{A_{16}B_{16}}{A_{11}} \Big ),\end{aligned}$$
(79)
$$\begin{aligned} K_{24}= & {} B_{26} - \dfrac{A_{16} B_{12}}{A_{11}}=K_{42}, \end{aligned}$$
(80)
$$\begin{aligned} K_{43}= & {} \Bigl (B_{26} - \dfrac{B_{12} A_{16}}{A_{11}}\Bigr )\psi (s) \nonumber \\&+\,2 \Big ( D_{26}-\dfrac{B_{12}B_{16}}{A_{11}} \Big ), \end{aligned}$$
(81)
$$\begin{aligned} K_{44}= & {} D_{22} - \dfrac{B_{12}^{2}}{A_{11}},\nonumber \\ K_{51}= & {} B_{26} - \dfrac{B_{16} A_{12}}{A_{11}}, \end{aligned}$$
(82)
$$\begin{aligned} K_{52}= & {} B_{66}- \dfrac{B_{16} A_{16}}{A_{11}}, \end{aligned}$$
(83)
$$\begin{aligned} K_{53}= & {} \Bigl (B_{66}- \dfrac{B_{16} A_{16}}{A_{11}}\Bigr )\psi (s)\nonumber \\&+\,2 \Big ( D_{66}-\dfrac{{B_{16}}^2}{A_{11}} \Big ),\end{aligned}$$
(84)
$$\begin{aligned} K_{54}= & {} D_{26} - \dfrac{B_{12} B_{16}}{A_{11}}. \end{aligned}$$
(85)

The global stiffness quantities \(a_{ij}\) \((=a_{ji})\):

$$\begin{aligned} a_{11}= & {} \oint _C K_{11} \hbox {d}s,\nonumber \\ a_{12}= & {} \oint _C \left( K_{11} x-K_{14}\dfrac{\hbox {d}z}{\hbox {d}s}\right) \hbox {d}s,\end{aligned}$$
(86)
$$\begin{aligned} a_{13}= & {} \oint _C \left( zK_{11}+K_{14}\dfrac{\hbox {d}x}{\hbox {d}s}\right) \hbox {d}s,\nonumber \\ a_{14}= & {} \oint _C K_{12} \dfrac{\hbox {d}x}{\hbox {d}s} \hbox {d}s, \end{aligned}$$
(87)
$$\begin{aligned} a_{15}= & {} \oint _C K_{12} \dfrac{\hbox {d}z}{\hbox {d}s}\hbox {d}s,\nonumber \\ a_{16}= & {} -\oint _C \left[ F_w K_{11}+K_{14} a(s)\right] \hbox {d}s, \end{aligned}$$
(88)
$$\begin{aligned} a_{17}= & {} \oint _C K_{13} \hbox {d}s,\nonumber \\ a_{18}= & {} \oint _C [K_{11}(x^2+z^2)+2r_n K_{41}]\hbox {d}s,\end{aligned}$$
(89)
$$\begin{aligned} a_{22}= & {} \oint _C \left[ x^{2}K_{11}-2x\dfrac{\hbox {d}z}{\hbox {d}s}K_{14} + \Bigl (\dfrac{\hbox {d}z}{\hbox {d}s}\Bigr )^{2}K_{44}\right] \hbox {d}s,\nonumber \\ \end{aligned}$$
(90)
$$\begin{aligned} a_{23}= & {} \oint _C \left[ xz K_{11}+x\dfrac{\hbox {d}x}{\hbox {d}s}K_{14}\right] \hbox {d}s\nonumber \\&-\oint _C \left[ z\dfrac{\hbox {d}z}{\hbox {d}s} K_{14}+\dfrac{\hbox {d}z}{\hbox {d}s}\dfrac{\hbox {d}x}{\hbox {d}s}K_{44}\right] \hbox {d}s,\end{aligned}$$
(91)
$$\begin{aligned} a_{24}= & {} \oint _C \left[ x\dfrac{\hbox {d}x}{\hbox {d}s}K_{12}-\dfrac{\hbox {d}z}{\hbox {d}s}\dfrac{\hbox {d}x}{\hbox {d}s}K_{42}\right] \hbox {d}s, \end{aligned}$$
(92)
$$\begin{aligned} a_{25}= & {} \oint _C \left[ x\dfrac{\hbox {d}z}{\hbox {d}s}K_{12}-\Bigl (\dfrac{\hbox {d}z}{\hbox {d}s}\Bigr )^{2}K_{42}\right] \hbox {d}s, \end{aligned}$$
(93)
$$\begin{aligned} a_{26}= & {} \oint _C \left[ -xF_wK_{11}-x a(s)K_{14}\right] \hbox {d}s \nonumber \\&+\,\oint _C \left[ K_{41}\dfrac{\hbox {d}z}{\hbox {d}s}F_w+a(s)\dfrac{\hbox {d}z}{\hbox {d}s}K_{44}\right] \hbox {d}s,\end{aligned}$$
(94)
$$\begin{aligned} a_{27}= & {} \oint _C \left[ xK_{13} - \dfrac{\hbox {d}z}{\hbox {d}s}K_{43}\right] \hbox {d}s, \end{aligned}$$
(95)
$$\begin{aligned} a_{28}= & {} \oint _C \left\{ x[K_{11}(x^2+z^2)+2r_n K_{41}]\right\} \hbox {d}s\nonumber \\&-\oint _C \left\{ \dfrac{\hbox {d}z}{\hbox {d}s}[K_{14}(x^2+z^2)+2r_n K_{44}]\right\} \hbox {d}s,\nonumber \\ \end{aligned}$$
(96)
$$\begin{aligned} a_{33}= & {} \oint _C \left[ z^{2}K_{11} + 2z\dfrac{\hbox {d}x}{\hbox {d}s}K_{14} + \Bigl (\dfrac{\hbox {d}x}{\hbox {d}s}\Bigr )^{2}K_{44}\right] \hbox {d}s,\nonumber \\ \end{aligned}$$
(97)
$$\begin{aligned} a_{34}= & {} \oint _C \left[ z\dfrac{\hbox {d}x}{\hbox {d}s}K_{12}+\Bigl (\dfrac{\hbox {d}x}{\hbox {d}s}\Bigr )^2 K_{42}\right] \hbox {d}s, \end{aligned}$$
(98)
$$\begin{aligned} a_{35}= & {} \oint _C \left[ z\dfrac{\hbox {d}z}{\hbox {d}s}K_{12}+\dfrac{\hbox {d}x}{\hbox {d}s}\dfrac{\hbox {d}z}{\hbox {d}s} K_{42}\right] \hbox {d}s, \end{aligned}$$
(99)
$$\begin{aligned} a_{36}= & {} \oint _C \left[ -zF_wK_{11}-a(s)zK_{14}\right] \hbox {d}s\nonumber \\&-\oint _C \left[ \dfrac{\hbox {d}x}{\hbox {d}s}F_wK_{41}+a(s)\dfrac{\hbox {d}x}{\hbox {d}s}K_{44}\right] \hbox {d}s, \end{aligned}$$
(100)
$$\begin{aligned} a_{37}= & {} \oint _C\left[ zK_{13} + \dfrac{\hbox {d}x}{\hbox {d}s}K_{43}\right] \hbox {d}s, \end{aligned}$$
(101)
$$\begin{aligned} a_{38}= & {} \oint _C \left\{ z[K_{11}(x^2+z^2)+2r_n K_{41}]\right\} \hbox {d}s\nonumber \\&+\,\oint _C \left\{ \dfrac{\hbox {d}x}{\hbox {d}s}[K_{14}(x^2+z^2)+2r_n K_{44}]\right\} \hbox {d}s,\nonumber \\ \end{aligned}$$
(102)
$$\begin{aligned} a_{44}= & {} \oint _C\left[ \Bigl (\dfrac{\hbox {d}x}{\hbox {d}s}\Bigr )^{2}K_{22} + \Bigl (\dfrac{\hbox {d}z}{\hbox {d}s}\Bigr )^{2}\bar{A}_{44} \right] \hbox {d}s, \end{aligned}$$
(103)
$$\begin{aligned} a_{45}= & {} \oint _C\left[ \dfrac{\hbox {d}x}{\hbox {d}s}\dfrac{\hbox {d}z}{\hbox {d}s}K_{22}-\dfrac{\hbox {d}x}{\hbox {d}s}\dfrac{\hbox {d}z}{\hbox {d}s}A_{44}\right] \hbox {d}s, \end{aligned}$$
(104)
$$\begin{aligned} a_{46}= & {} \oint _C\left[ -F_w\dfrac{\hbox {d}x}{\hbox {d}s}K_{21}-a(s)\dfrac{\hbox {d}x}{\hbox {d}s}K_{24}\right] \hbox {d}s, \end{aligned}$$
(105)
$$\begin{aligned} a_{47}= & {} \oint _C K_{23}\dfrac{\hbox {d}x}{\hbox {d}s} \hbox {d}s, \end{aligned}$$
(106)
$$\begin{aligned} a_{48}= & {} \oint _C \dfrac{\hbox {d}x}{\hbox {d}s}[K_{12}(x^2+z^2)+2r_n K_{42}]\hbox {d}s,\end{aligned}$$
(107)
$$\begin{aligned} a_{55}= & {} \oint _C\left[ \Bigl (\dfrac{\hbox {d}z}{\hbox {d}s}\Bigr )^{2}K_{22} + \Bigl (\dfrac{\hbox {d}x}{\hbox {d}s}\Bigr )^{2}\bar{A}_{44} \right] \hbox {d}s, \end{aligned}$$
(108)
$$\begin{aligned} a_{56}= & {} \oint _C\left[ -F_w\dfrac{\hbox {d}z}{\hbox {d}s}K_{21}-a(s)\dfrac{\hbox {d}z}{\hbox {d}s}K_{24}\right] \hbox {d}s, \end{aligned}$$
(109)
$$\begin{aligned} a_{57}= & {} \oint _C K_{23}\dfrac{\hbox {d}z}{\hbox {d}s},\end{aligned}$$
(110)
$$\begin{aligned} a_{58}= & {} \oint _C \dfrac{\hbox {d}z}{\hbox {d}s}[K_{12}(x^2+z^2)+2r_n K_{42}]\hbox {d}s,\end{aligned}$$
(111)
$$\begin{aligned} a_{66}= & {} \oint _C\left[ F_{w} ^{2}K_{11} + 2F_{w} a(s)K_{14} + a(s)^{2}K_{44}\right] \hbox {d}s,\nonumber \\ \end{aligned}$$
(112)
$$\begin{aligned} a_{67}= & {} -\oint _C\left[ F_wK_{13}+a(s)K_{43}\right] \hbox {d}s, \end{aligned}$$
(113)
$$\begin{aligned} a_{68}= & {} -\oint _C \left\{ F_w[K_{11}(x^2+z^2)+2r_n K_{41}]\right\} \hbox {d}s\nonumber \\&-\oint _C \left\{ a[K_{14}(x^2+z^2)+2r_n K_{44}]\right\} \hbox {d}s,\end{aligned}$$
(114)
$$\begin{aligned} a_{77}= & {} \oint _C \left( \psi (s)K_{23}+2 K_{53} \right) \hbox {d}s, \end{aligned}$$
(115)
$$\begin{aligned} a_{78}= & {} \oint _C [K_{13}(x^2+z^2)+2r_n K_{43}]\hbox {d}s, \end{aligned}$$
(116)
$$\begin{aligned} a_{88}= & {} \oint _C \left\{ (x^2+z^2)[K_{11}(x^2+z^2)+2r_n K_{41}]\right\} \hbox {d}s\nonumber \\&+\,\oint _C \left\{ 2r_n[K_{14}(x^2+z^2)+2r_n K_{44}]\right\} \hbox {d}s,\nonumber \\ \end{aligned}$$
(117)

where

$$\begin{aligned} {\bar{A}}_{44}=A_{44}-\dfrac{A_{45}^2}{A_{55}}. \end{aligned}$$
(118)

Appendix 3: Quadratic and cubic nonlinear terms

Quadratic nonlinear terms:

$$\begin{aligned}&N_u^2 \,:\; \left\{ a_{11} v'_0 u'_0 + a_{14} \theta _z u'_0 + a_{55} \theta _x \phi +(a_{55}-a_{44}) w'_0 \phi \right\} '\nonumber \\&\quad +\, \Big \{ a_{14} \Big ( \dfrac{3}{2} (u'_0)^2 + \dfrac{1}{2} (w'_0)^2 \Big ) \nonumber \\&\quad +\,a_{33} \theta '_x \phi ' +a_{37}(\phi ')^2 \Big \}'\nonumber \\&\quad +\, \left\{ a_{48}\dfrac{1}{2}(\phi ')^2 \right\} ', \end{aligned}$$
(119a)
$$\begin{aligned}&N_v^2 \,:\; \Big \{ a_{11} \left[ \dfrac{1}{2}(u'_0)^2 +\dfrac{1}{2}(w'_0)^2 \right] \nonumber \\&\quad -\, a_{14} w'_0 \phi + a_{18} \dfrac{1}{2}(\phi ')^2 \Big \}',\end{aligned}$$
(119b)
$$\begin{aligned}&N_w^2 \,:\; \left\{ a_{11} v'_0w'_0 +a_{14}\theta _z w'_0 -a_{14} v'_0 \phi - a_{44}\theta _z \phi \right\} '\nonumber \\&\quad +\, \left\{ a_{14} u'_0w'_0 -a_{22}\theta '_z\phi ' +(a_{55}-a_{44})u'_0 \phi \right\} ' , \end{aligned}$$
(119c)
$$\begin{aligned}&N_\phi ^2 \,:\; \left\{ a_{18} v'_0 \phi ' + a_{48} \phi ' \theta _z + 2 a_{37} u'_0 \phi ' +a_{33}u'_0 \theta '_x \right\} ' \nonumber \\&\quad +\, \left\{ -a_{22}w'_0 \theta '_z +a_{48}u'_0 \phi ' \right\} ' + a_{14} v'_0w'_0 + a_{44}w'_0\theta _z \nonumber \\&\quad -\,a_{55}u'_0\theta _x + (a_{44}-a_{55})u'_0w'_0 , \end{aligned}$$
(119d)
$$\begin{aligned}&N_x^2 \, :\; \left\{ a_{33} u'_0\phi ' \right\} ' - a_{55} u'_0 \phi ,\end{aligned}$$
(119e)
$$\begin{aligned}&N_z^2 \,: \; \left\{ -a_{22} w'_0\phi ' \right\} ' - a_{14} \left[ \dfrac{1}{2} (u'_0)^2 + \dfrac{1}{2} (w'_0)^2 \right] \nonumber \\&\quad +\, a_{44}w'_0 \phi - a_{48}\dfrac{1}{2}(\phi ')^2. \end{aligned}$$
(119f)

Cubic nonlinear terms:

$$\begin{aligned}&N_u^3 \,:\; \left\{ a_{11} \left[ \dfrac{1}{2} (u'_0)^3 + \dfrac{1}{2} u'_0 (w'_0)^2 \right] + a_{18} \dfrac{1}{2} u'_0 (\phi ')^2 \right\} ' \nonumber \\&\quad \left\{ -a_{44} u'_0 \phi ^2 -a_{14} \dfrac{1}{2}v'_0\phi ^2 - a_{44}\dfrac{1}{2} \theta _z \phi ^2 \right\} ' \nonumber \\&\quad + \,\Big \{ a_{33} u'_0 (\phi ')^2 -a_{14} u'_0 w'_0 \phi \nonumber \\&\quad -\,a_{22} \theta '_z \phi ' \phi +a_{55} u'_0 \phi ^2 \Big \}' , \end{aligned}$$
(120a)
$$\begin{aligned}&N_v^3 \,:\; \left\{ - a_{14} \dfrac{1}{2} u'_0 \phi ^2 \right\} ',\end{aligned}$$
(120b)
$$\begin{aligned}&N_w^3 \,:\; \left\{ a_{11} \left[ \dfrac{1}{2}w'_0(u'_0)^2 + \dfrac{1}{2}(w'_0)^3 \right] +a_{18}\dfrac{1}{2}w'_0(\phi ')^2 \right\} '\nonumber \\&\quad +\, \left\{ -a_{55}\dfrac{1}{2}\theta _x \phi ^2 +a_{22}w'_0(\phi ')^2 - a_{55}w'_0\phi ^2 \right\} ' \nonumber \\&\quad +\, \left\{ -a_{14} \left( \dfrac{1}{2}(u'_0)^2 \phi + \dfrac{3}{2}(w'_0)^2\phi \right) -a_{33}\theta '_x \phi '\phi \right\} ' \nonumber \\&\quad +\, \left\{ - a_{37}(\phi ')^2 \phi -a_{48}\dfrac{1}{2}(\phi ')^2\phi +a_{44} w'_0 \phi ^2 \right\} ' ,\nonumber \\ \end{aligned}$$
(120c)
$$\begin{aligned}&N_\phi ^3 \,:\; \left\{ a_{18} \left[ \dfrac{1}{2}\phi '(u'_0)^2 + \dfrac{1}{2}\phi '(w'_0)^2 \right] +a_{88}\dfrac{1}{2}(\phi ')^3 \right\} ' \nonumber \\&\quad +\, \left\{ a_{33} \phi '(u'_0)^2 +a_{22}\phi '(w'_0)^2 \right\} ' \nonumber \\&\quad -\, \Big \{ 2 a_{37} w'_0 \phi '\phi + a_{33}w'_0\theta '_x \phi +a_{22}u'_0\theta '_z \phi \nonumber \\&\qquad \quad +\, a_{48}w'_0\phi '\phi \Big \}'\nonumber \\&\quad +\, a_{33}w'_0\phi '\theta '_x +a_{37}w'_0(\phi ')^2 \nonumber \\&\quad +\, a_{22}u'_0\phi '\theta '_z+ a_{14} \left[ \dfrac{1}{2}(u'_0)^2 w'_0 + \dfrac{1}{2}(w'_0)^3\right] \nonumber \\&\quad +\, a_{48}\dfrac{1}{2}w'_0(\phi ')^2 + a_{14} v'_0u'_0 \phi \nonumber \\&\quad + \,a_{44}u'_0\theta _z \phi + a_{55}w'_0\theta _x \phi \nonumber \\&\quad +\, (a_{44}- a_{55}) \left[ (u'_0)^2\phi - (w'_0)^2\phi \right] ,\end{aligned}$$
(120d)
$$\begin{aligned}&N_x^3 \, :\; \left\{ - a_{33} w'_0\phi '\phi \right\} ' +\, a_{55} \dfrac{1}{2} w'_0 \phi ^2 , \end{aligned}$$
(120e)
$$\begin{aligned}&N_z^3 \,: \; \left\{ -a_{22} u'_0 \phi ' \phi \right\} ' + a_{44} \dfrac{1}{2} u'_0 \phi ^2 . \end{aligned}$$
(120f)

Appendix 4: Matrixes in Eqs. 29 and 39

Mass matrix

$$\begin{aligned} {\mathbf {M}}=\int _0^L \begin{bmatrix} b_1{\varvec{\Psi }}_u{\varvec{\Psi }}_u^T&0&0&0&0&0 \\ {}&b_1{\varvec{\Psi }}_v{\varvec{\Psi }}_v^T&0&0&0&0 \\ {}{} & {} b_1{\varvec{\Psi }}_w{\varvec{\Psi }}_w^T&0&0&0 \\ {}{} & {} {}&{\mathbf {M}}_{44}&0&0 \\ {}&{\text {Symm}}{} & {} {}&{\mathbf {M}}_{55}&0 \\ {}{} & {} {}{} & {} {}&{\mathbf {M}}_{66} \\ \end{bmatrix} \hbox {d}y.\nonumber \\ \end{aligned}$$
(121)

with

$$\begin{aligned} \left\{ \begin{array}{l} {\mathbf {M}}_{44}=(b_4+b_5){\varvec{\Psi }}_\phi {\varvec{\Psi }}_\phi ^T +(b_{10}+b_{18}){\varvec{\Psi '}}_\phi {\varvec{\Psi '}}_\phi ^T, \\ {\mathbf {M}}_{55}=(b_4+b_{14}){\varvec{\Psi }}_x{\varvec{\Psi }}_x^T,\\ {\mathbf {M}}_{66}=(b_5+b_{15}){\varvec{\Psi }}_z{\varvec{\Psi }}_z^T, \\ \end{array} \right. \end{aligned}$$

Stiffness matrix

$$\begin{aligned} {\mathbf {K}}=\int _0^L \begin{bmatrix} a_{44}{\varvec{\Psi }}'_u {{\varvec{\Psi }}'_u}^T&a_{14}{\varvec{\Psi }}'_u {{\varvec{\Psi }}'_v}^T&0&0&0&{\mathbf {K}}_{16} \\ {}&a_{11}{\varvec{\Psi }}'_v {{\varvec{\Psi }}'_v}^T&{\mathbf {K}}_{23}&0&{\mathbf {K}}_{25}&{\mathbf {K}}_{26} \\ {}{} & {} {\mathbf {K}}_{33}&0&{\mathbf {K}}_{35}&0 \\ {}{} & {} {}&{\mathbf {K}}_{44}&{\mathbf {K}}_{45}&{\mathbf {K}}_{46} \\ {}&{\text {Symm}}{} & {} {}&{\mathbf {K}}_{55}&0 \\ {}{} & {} {}{} & {} {}&{\mathbf {K}}_{66} \end{bmatrix} \hbox {d}y. \end{aligned}$$
(122)

with

$$\begin{aligned} \left\{ \begin{array}{l} {\mathbf {K}}_{16}=a_{44}{\varvec{\Psi }}'_u {{\varvec{\Psi }}_z}^T ,\\ {\mathbf {K}}_{23}=a_{15}{\varvec{\Psi }}'_v {{\varvec{\Psi }}'_w}^T ,\\ {\mathbf {K}}_{25}=a_{15}{\varvec{\Psi }}'_v {{\varvec{\Psi }}'_x}^T ,\\ {\mathbf {K}}_{26}=a_{14}{\varvec{\Psi }}'_v {{\varvec{\Psi }}_z}^T ,\\ {\mathbf {K}}_{33}=a_{55}{\varvec{\Psi }}'_w {{\varvec{\Psi }}'_w}^T ,\\ {\mathbf {K}}_{35}=a_{55}{\varvec{\Psi }}'_w {{\varvec{\Psi }}'_x}^T ,\\ {\mathbf {K}}_{44}=a_{77}{\varvec{\Psi }}'_\phi {{\varvec{\Psi }}'_\phi }^T+a_{66}{\varvec{\Psi }}''_\phi {{\varvec{\Psi }}''_\phi }^T, \\ {\mathbf {K}}_{45}=a_{37}{\varvec{\Psi }}'_\phi {{\varvec{\Psi }}'_x}^T ,\\ {\mathbf {K}}_{46}=a_{27}{\varvec{\Psi }}'_\phi {{\varvec{\Psi }}'_z}^T ,\\ {\mathbf {K}}_{55}=a_{33}{\varvec{\Psi }}'_x {{\varvec{\Psi }}'_x}^T+a_{55}{\varvec{\Psi }}_x {{\varvec{\Psi }}_x}^T, \\ {\mathbf {K}}_{66}=a_{22}{\varvec{\Psi }}'_z {{\varvec{\Psi }}'_z}^T+a_{44}{\varvec{\Psi }}_z {{\varvec{\Psi }}_z}^T. \\ \end{array} \right. \end{aligned}$$

External forces vector

$$\begin{aligned} {\mathbf {Q}}=\begin{Bmatrix} \int _{0}^{L} p_x {\varvec{\Psi }}_u \hbox {d}y + {\bar{Q}}_x {\varvec{\Psi }}_u (L) \\ \int _{0}^{L} p_y {\varvec{\Psi }}_v \hbox {d}y + {\bar{T}}_y {\varvec{\Psi }}_v (L) \\ \int _{0}^{L} p_z {\varvec{\Psi }}_w \hbox {d}y + {\bar{Q}}_z {\varvec{\Psi }}_w (L) \\ \int _{0}^{L} (m_y +b'_w) {\varvec{\Psi }}_\phi \hbox {d}y + [ {\bar{M}}_y {\varvec{\Psi }}_\phi (L) +{\bar{B}}_w {\varvec{\Psi }}'_\phi (L) ]\\ \int _{0}^{L} m_x {\varvec{\Psi }}_x \hbox {d}y + {\bar{M}}_x {\varvec{\Psi }}_x (L) \\ \int _{0}^{L} m_z {\varvec{\Psi }}_z \hbox {d}y + {\bar{M}}_z {\varvec{\Psi }}_z (L) \\ \end{Bmatrix}. \end{aligned}$$
(123)

Nonlinear terms

$$\begin{aligned} {\mathbf {N}}_{mn}=\left\{ {\begin{array}{*{20}{c}} {{\mathbf {N}}_{mn}^u}&{{\mathbf {N}}_{mn}^v}&{{\mathbf {N}}_{mn}^w}&{{\mathbf {N}}_{mn}^\phi }&{{\mathbf {N}}_{mn}^x}&{{\mathbf {N}}_{mn}^z} \end{array}} \right\} ^T, \end{aligned}$$
(124)

with

$$\begin{aligned} {\mathbf {N}}_{mn}^u= & {} \int _0^L {\varvec{\Psi }}'_u \Big \{ \dfrac{3}{2} a_{14} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_u}^T {\mathbf {V}}_m^u} \nonumber \\&+\,a_{14} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}_z}^T {\mathbf {V}}_m^z} \nonumber \\&+\,\dfrac{1}{2} a_{14} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w} \nonumber \\&+\,(a_{55} - a_{44}){{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+\,\left( \dfrac{1}{2} a_{48} + a_{37}\right) {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+\, a_{33} {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}'_x}^T {\mathbf {V}}_m^x}\nonumber \\&+\,a_{55} {{{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}_x}^T {\mathbf {V}}_m^x} \nonumber \\&+\,a_{11} {{{\varvec{\Psi }}'_v}^T {\mathbf {V}}_n^v {{\varvec{\Psi }}'_u}^T {\mathbf {V}}_m^u} \Big \} \hbox {d}y, \end{aligned}$$
(125a)
$$\begin{aligned} {\mathbf {N}}_{mn}^v= & {} \int _0^L {\varvec{\Psi }}'_v \Big \{ \dfrac{1}{2} a_{11} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_u}^T {\mathbf {V}}_m^u} \nonumber \\&+\,\dfrac{1}{2} a_{11} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w} \nonumber \\&-\, a_{14} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+\, \dfrac{1}{2} a_{18} {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi } \Big \} \hbox {d}y, \end{aligned}$$
(125b)
$$\begin{aligned} {\mathbf {N}}_{mn}^w= & {} \int _0^L {\varvec{\Psi }}'_w \Big \{ a_{14} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w} \nonumber \\&+\,(a_{55} - a_{44}) {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_m^\phi }\nonumber \\&+\,a_{14} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}_z}^T {\mathbf {V}}_m^z} \nonumber \\&-\,a_{22} {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}'_z}^T {\mathbf {V}}_m^z} -a_{44} {{{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}_z}^T {\mathbf {V}}_m^z}\nonumber \\&+\, a_{11} {{{\varvec{\Psi }}'_v}^T {\mathbf {V}}_n^v {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w}\nonumber \\&-\, a_{14} {{{\varvec{\Psi }}'_v}^T {\mathbf {V}}_n^v {{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_m^\phi } \Big \} \hbox {d}y,\end{aligned}$$
(125c)
$$\begin{aligned} {\mathbf {N}}_{mn}^\phi= & {} \int _0^L \Big \{ {\varvec{\Psi }}_\phi \big [ a_{44}-a_{55} \big ] {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w} \nonumber \\&+ \,{\varvec{\Psi }}'_\phi a_{33} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_x}^T {\mathbf {V}}_m^x}\nonumber \\&+\, {\varvec{\Psi }}_\phi a_{55} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}_x}^T {\mathbf {V}}_m^x} \nonumber \\&-\, {\varvec{\Psi }}'_\phi a_{55} {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}_x}^T {\mathbf {V}}_m^x} \nonumber \\&+\, {\varvec{\Psi }}_\phi a_{48} {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}_z}^T {\mathbf {V}}_m^z}\nonumber \\&-\, {\varvec{\Psi }}'_\phi a_{22} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}'_z}^T {\mathbf {V}}_m^z} \nonumber \\&+\, {\varvec{\Psi }}_\phi a_{44} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}_z}^T {\mathbf {V}}_m^z}\nonumber \\&+\, {\varvec{\Psi }}'_\phi \big [ 2 a_{37} +a_{48} \big ] {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+\, {\varvec{\Psi }}'_\phi a_{18} {{{\varvec{\Psi }}'_v}^T {\mathbf {V}}_n^v {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+\, {\varvec{\Psi }}_\phi a_{14} {{{\varvec{\Psi }}'_v}^T {\mathbf {V}}_n^v {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w} \Big \} \hbox {d}y, \end{aligned}$$
(125d)
$$\begin{aligned} {\mathbf {N}}_{mn}^x= & {} \int _0^L \Big \{ {\varvec{\Psi }}'_x a_{33} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+\,{\varvec{\Psi }}_x a_{55} {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_m^\phi } \Big \} \hbox {d}y,\end{aligned}$$
(125e)
$$\begin{aligned} {\mathbf {N}}_{mn}^z= & {} \int _0^L \Big \{ {\varvec{\Psi }}_z \dfrac{1}{2} a_{14} \big [ {{{\varvec{\Psi }}'_u}^T {\mathbf {V}}_n^u {{\varvec{\Psi }}'_u}^T {\mathbf {V}}_m^u}\nonumber \\&+\, {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}'_w}^T {\mathbf {V}}_m^w} \big ] - {\varvec{\Psi }}'_z a_{22} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi }\nonumber \\&- \,{\varvec{\Psi }}_z a_{44} {{{\varvec{\Psi }}'_w}^T {\mathbf {V}}_n^w {{\varvec{\Psi }}_\phi }^T {\mathbf {V}}_m^\phi } \nonumber \\&+ \,{\varvec{\Psi }}_z \dfrac{1}{2} a_{48} {{{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_n^\phi {{\varvec{\Psi }}'_\phi }^T {\mathbf {V}}_m^\phi } \Big \} \hbox {d}y. \end{aligned}$$
(125f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qin, Z. Nonlinear modal interactions in composite thin-walled beam structures with simultaneous 1:2 internal and 1:1 external resonances. Nonlinear Dyn 86, 1381–1405 (2016). https://doi.org/10.1007/s11071-016-2970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2970-3

Keywords

Navigation