Skip to main content
Log in

Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The relationship of equations of motion of a Lagrangian \(\phi (L)\) to those of L is studied in the non-autonomous case, and the question of the existence of a function \(\phi \) such that \(\phi (L)\) is dynamically equivalent to L is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cariñena, J.F., Fernández-Núñez, J.: Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn. 83, 457–461 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cieśliński, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Theor. 43, 175205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. El-Nabulsi, A.R.: Non-linear dynamics with non-standard lagrangians. Qual. Theory Dyn. Syst. 12, 273–291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin, Reading (1978)

    MATH  Google Scholar 

  5. Crampin, M., Pirani, F.A.E.: Applicable Differential Geometry. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  6. Saunders, D.J.: The Geometry of Jet Bundles, Lecture Notes in Mathematics, vol. 142. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  7. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: Unusual Liénard-type nonlinear oscillator. Phys. Rev. E 72, 066203 (2005)

    Article  Google Scholar 

  8. Cariñena, J.F., Rañada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helmholtz, H.: Über die physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math. 100, 137–141 (1887)

    MathSciNet  MATH  Google Scholar 

  10. Darboux, G.: Leçons sur la Théorie Génerale des Surfaces, vol. 3. Gauthier-Villards, Paris (1894)

    MATH  Google Scholar 

  11. Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. Amer. Math. Soc. 50, 71–128 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nucci, M.C., Tamizhmani, K.M.: Lagrangians for dissipative nonlinear oscillators: the method of Jacobi last multiplier. J. Nonlinear Math. Phys. 17, 167–178 (2010)

  13. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 41, 055205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Musielak, Z.E., Roy, D., Swift, L.D.: Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos, Solitons and Fractals 38, 894–902 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saha, A., Talukdar, B.: On the Non-standard Lagrangian Equations. arXiv: 1301.2667 (2013)

  17. Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. J. Math. Phys. 48, 032701 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Currie, D.G., Saletan, E.J.: \(q\)-equivalent particle Hamiltonians. The classical one-dimensional case. J. Math. Phys. 7, 967–974 (1966)

    Article  MathSciNet  Google Scholar 

  20. Hojman, S., Harleston, H.: Equivalent Lagrangians: multidimensional case. J. Math. Phys. 22, 1414–1419 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cariñena, J.F., Ibort, L.A.: Non-noether constants of motion. J. Phys. A Math. Gen. 16, 1–7 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Riewe, F.: Non-conservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  23. El-Nabulsi, R.A.: A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian formalism. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 84, 563–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Nabulsi, A.R.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 87, 465–470 (2013)

    Article  Google Scholar 

  26. El-Nabulsi, R.A.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79, 2055–2068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978)

    Book  MATH  Google Scholar 

  28. Cariñena, J.F., Fernández-Núñez, J., Rañada, M.F.: Singular Lagrangians affine in velocities. J. Phys. A Math. Gen. 36, 3789–3807 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cariñena, J.F., Crampin, M., Ibort, L.A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1, 345–374 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Saunders, D.J.: Homogeneous Lagrangian systems. Rep. Math. Phys. 51, 315–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Fernández Núñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cariñena, J.F., Fernández Núñez, J. Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. Nonlinear Dyn 86, 1285–1291 (2016). https://doi.org/10.1007/s11071-016-2964-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2964-1

Keywords

Mathematics Subject Classification

Navigation