Skip to main content
Log in

Variational symmetries of Lagrangian systems with second-order derivatives

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We discuss an elementary derivation of variational symmetries and corresponding integrals of motion for the Lagrangian systems depending on acceleration. Providing several examples, we make the manuscript accessible to a wide range of readers with an interest in higher-order Lagrangians and symmetries. The discussed technique is also applicable to the Lagrangian systems with higher-order derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

Notes

  1. It is impossible to cite all relevant papers, we mention here some more modern works for the interested reader [2,3,4,5].

  2. Assuming we have a non-degenerate system, i.e. \(\det \left( \dfrac{\partial ^2\,L}{\partial \ddot{x}_i\partial \ddot{x}_j}\right) \ne 0.\)

  3. In the literature, sometimes this expression is called Noether-Bassel-Hagen identity, see e.g. [14].

  4. Of course, if one knows the symmetries in advance, then it is easier to use the Noether theorem to obtain the integrals of motion.

References

  1. M. Ostrogradsky, Memoires l’acad. imperiale sci. st, Petersbourg, IV 385 (1850)

  2. R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability. Sch. Ser. 10(8), 32243 (2015). https://doi.org/10.4249/scholarpedia.32243. arXiv:1506.02210 [hep-th]

    Article  Google Scholar 

  3. M. de León, D.M. de Diego, Symmetries and constants of the motion for higher-order lagrangian systems. J. Math. Phys. Ser. 36(8), 4138–4161 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. F. Çağatay Uçgun, O. Esen, H. Gümral, Reductions of topologically massive gravity i: hamiltonian analysis of second order degenerate lagrangians. J. Math. Phys. 59(1), 013510 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. M. Cruz, R. Gómez-Cortés, A. Molgado, E. Rojas, Hamiltonian analysis for linearly acceleration-dependent lagrangians. J. Math. Phys. Ser. 57(6), 062903 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. G. Torres del Castillo, C. Andrade Mirón, R. Bravo Rojas, Variational symmetries of lagrangians. Revista mexicana de física E 59(2), 140–147 (2013)

    MathSciNet  Google Scholar 

  7. G.T. del Castillo, I. Rubalcava-García, Variational symmetries as the existence of ignorable coordinates. Eur. J. Phys. Ser. 38(2), 025002 (2017)

    Article  MATH  Google Scholar 

  8. G. Arutyunov, Liouville integrability, In Elements of Classical and Quantum Integrable Systems, pp. 1–68. Springer, (2019)

  9. N.H. Ibragimov, CRC handbook of Lie group analysis of differential equations, vol. 3 (1995)

  10. N.K. Ibragimov, Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of sophus lie). Russ. Math. Surv. Ser. 47(4), 89 (1992)

    Article  MathSciNet  Google Scholar 

  11. G. Bluman, S. Anco, Symmetry and integration methods for differential equations, vol. 154 (Springer Science & Business Media, 2008)

  12. P.J. Olver, Applications of Lie groups to differential equations, vol. 107 (Springer Science & Business Media, 2000)

  13. A. Deriglazov, Classical Mechanics (Springer, 2016)

  14. R. Leone, On the wonderfulness of noether’s theorems, 100 years later, and routh reduction, arXiv preprint arXiv:1804.01714 (2018)

  15. A. Trautman, Noether equations and conservation laws. Commun. Math. Phys. Ser. 6(4), 248–261 (1967)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. D.E. Neuenschwander, Emmy Noether’s wonderful theorem (JHU Press, 2017)

  17. T. Gourieux, R. Leone, Noether’s theorem, the rund-trautman function, and adiabatic invariance. Eur. J. Phys. Ser. 42(3), 035009 (2021)

    Article  MATH  Google Scholar 

  18. M. Crâşmăreanu, A noetherian symmetry for 2d spinning particle. Int. J. Non-Linear Mech. 35(5), 947–951 (2000). https://doi.org/10.1016/S0020-7462(99)00072-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. A.V. Smilga, Ghost-free higher-derivative theory. Phys. Lett. B Ser. 632, 433–438 (2006). https://doi.org/10.1016/j.physletb.2005.10.014. arXiv:hep-th/0503213

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. N. Boulanger, F. Buisseret, F. Dierick, O. White, Higher-derivative harmonic oscillators: stability of classical dynamics and adiabatic invariants. Eur. Phys. J. C 79(1), 60 (2019). https://doi.org/10.1140/epjc/s10052-019-6569-y. arXiv:1811.07733 [physics.class-ph]

    Article  ADS  Google Scholar 

  21. J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Galilean-invariant (2+1)-dimensional models with a chern-simons-like term and d = 2 noncommutative geometry. Ann. Phys. 260(2), 224–249 (1997). https://doi.org/10.1006/aphy.1997.5729

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants of the seminar series on “Higher-derivative systems” held at Bogazici University in the summer of 2020. The work of Ilmar Gahramanov is partially supported by the Bogazici University Research Fund under grant number 20B03SUP3. Ege Çoban and Dilara Kosva are supported by the 2209-A TUBITAK National/International Research Projects Fellowship Programme for Undergraduate Students under grant number 1919B012000987.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmar Gahramanov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coban, E., Gahramanov, I. & Kosva, D. Variational symmetries of Lagrangian systems with second-order derivatives. Eur. Phys. J. Plus 138, 605 (2023). https://doi.org/10.1140/epjp/s13360-023-04241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04241-5

Navigation