Skip to main content
Log in

Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic synchronization of two time-delay coupled Hindmarsh–Rose neurons via nonlinear control is investigated in this paper. Both the intrinsic slow current delay in a single Hindmarsh–Rose neuron and the coupling delay between the two neurons are considered. When there is no control, chaotic synchronization occurs for a limited range of the coupling strength and the time-delay values. To obtain complete chaotic synchronization irrespective of the time-delay or the coupling strength, we propose two nonlinear control schemes. The first uses adaptive control for chaotic synchronization of two electrically coupled delayed Hindmarsh–Rose neuron models. The second derives the sufficient conditions to ensure a complete synchronization between master and slave models through appropriate Lyapunov–Krasovskii functionals and the linear matrix inequality technique. Numerical simulations are carried out to show the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Johnson, B.B., Dhople, S.V., Hamadeh, A.O., Krein, P.T.: Synchronization of nonlinear oscillators in an lti electrical power network. IEEE T. Circ.-I 61(3), 834–844 (2014)

    Google Scholar 

  2. Serrano-Guerrero, H., Cruz-Hernández, C., López-Gutiérrez, R.M., Posadas-Castillo, C., Inzunza-González, E.: Chaotic synchronization in star coupled networks of three-dimensional cellular neural networks and its application in communications. Int. J. Nonlin. Sci. Num. 11(8), 571–580 (2010)

    Article  Google Scholar 

  3. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE T. Circ. Syst. 38(4), 453–456 (1991)

    Article  MATH  Google Scholar 

  5. Shabunin, A., Astakhov, V., Demidov, V., Provata, A., Baras, F., Nicolis, G., Anishchenko, V.: Modeling chemical reactions by forced limit-cycle oscillator: synchronization phenomena and transition to chaos. Chaos Sol. Fract. 15(2), 395–405 (2003)

    Article  MATH  Google Scholar 

  6. Milanović, V., Zaghloul, M.E.: Synchronization of chaotic neural networks and applications to communications. Int. J. Bifurcat. Chaos 6(12b), 2571–2585 (1996)

    Article  MATH  Google Scholar 

  7. Zhou, J., Chen, T., Xiang, L.: Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circ. Syst. Signal Pr. 24(5), 599–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Image encryption process based on chaotic synchronization phenomena. Signal Process. 93(5), 1328–1340 (2013)

    Article  Google Scholar 

  9. Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. 19(10), 3735–3744 (2014)

    Article  MathSciNet  Google Scholar 

  10. Abarbanel, H.D.I., Creveling, D.R., Jeanne, J.M.: Estimation of parameters in nonlinear systems using balanced synchronization. Phys. Rev. E 77, 016208 (2008)

    Article  MathSciNet  Google Scholar 

  11. Abarbanel, H.D.I., Creveling, D.R., Farsian, R., Kostuk, M.: Dynamical state and parameter estimation. Siam J. Appl. Dyn. Syst. 8(4), 1341–1381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20(1), 64–73 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cooper, S.: Is whole-culture synchronization biology’s ’perpetual-motion machine’? Tr. Biotechnol. 22(6), 266–269 (2004)

    Article  Google Scholar 

  14. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989)

    Article  Google Scholar 

  15. Meister, M., Wong, R.O.L., Baylor, D.A., Shatz, C.J.: Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252(5008), 939–943 (1991)

    Article  Google Scholar 

  16. Roelfsema, P.R., Engel, A.K., König, P., Singer, W.: Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612), 157–161 (1997)

    Article  Google Scholar 

  17. Wang, Q.Y., Lu, Q.S., Chen, G.R.: Ordered bursting synchronization and complex wave propagation in a ring neuronal network. Phys. A 374(2), 869–878 (2007)

    Article  Google Scholar 

  18. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006)

    Article  Google Scholar 

  19. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4), 500–544 (1952)

    Article  Google Scholar 

  20. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  Google Scholar 

  21. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. P. Roy. Soc. Lond. B. Bio. 221(1222), 87–102 (1984)

    Article  Google Scholar 

  22. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  23. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE T. Neural Networ. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  24. Shuai, J., Durand, D.M.: Phase synchronization in two coupled chaotic neurons. Phys. Lett. A 264(4), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 281011–281014 (2004)

    Article  Google Scholar 

  26. Wang, Q., Lu, Q., Wang, H.: Transition to complete synchronization via near-synchronization in two coupled chaotic neurons. Chin. Phys. 14(11), 2189–2195 (2005)

    Article  Google Scholar 

  27. Jalili, M.: Phase synchronizing in Hindmarsh-Rose neural networks with delayed chemical coupling. Neurocomputing 74(10), 1551–1556 (2011)

    Article  Google Scholar 

  28. Wang, H., Wang, Q., Lu, Q., Zheng, Y.: Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cognit. Neurodyn. 7(2), 121–131 (2013)

    Article  Google Scholar 

  29. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos 25(9), 097611 (2015)

    Article  Google Scholar 

  30. Shi, Y., Wang, J., Deng, B., Liu, Q.: Chaotic synchronization of coupled Hindmarsh-Rose neurons using adaptive control. In: 2nd International Conference on Biomedical Engineering and Informatics (BMEI ’09), pp. 1–5 (2009)

  31. Nguyen, L.H., Hong, K.: Adaptive synchronization of two coupled chaotic Hindmarsh-Rose neurons by controlling the membrane potential of a slave neuron. Appl. Math. Model. 37(4), 2460–2468 (2013)

    Article  MathSciNet  Google Scholar 

  32. Vaidyanathan, S.: Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Int. J. PharmTech Res. 8(6), 117–127 (2015)

    Google Scholar 

  33. Wang, J., Deng, B., Fei, X.: Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation. Chaos Solit. Fract. 27(5), 1272–1278 (2006)

    Article  MATH  Google Scholar 

  34. Rehan, M., Hong, K.: Robust synchronization of delayed chaotic FitzHugh-Nagumo neurons under external electrical stimulation. Comput. Math. Method M. 2012, 1–11 (2012)

  35. Che, Y.-Q., Wang, J., Tsang, K.-M., Chan, W.-L.: Unidirectional synchronization for Hindmarsh-Rose neurons via robust adaptive sliding mode control. Nonlinear Anal.-Real 11(2), 1096–1104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Aguilar-López, R., Martínez-Guerra, R.: Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback. Chaos Solit. Fract. 37(2), 539–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, T., Wang, J., Fei, X., Deng, B.: Synchronization of coupled FitzHugh-Nagumo systems via MIMO feedback linearization control. Chaos Solit. Fract. 33(1), 194–202 (2007)

    Article  Google Scholar 

  38. Nguyen, L.H., Hong, K.: Synchronization of coupled chaotic FitzHugh-Nagumo neurons via Lyapunov functions. Math. Comput. Simulat. 82(4), 590–603 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904-041901-041904-041911 (2004)

    Article  MathSciNet  Google Scholar 

  40. Bin, D., Jiang, W., Xiangyang, F.: Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control. Chaos Solit. Fract. 29(1), 182–189 (2006)

    Article  Google Scholar 

  41. Shahverdiev, E.M., Sivaprakasam, S., Shore, K.A.: Lag synchronization in time-delayed systems. Phys. Lett. A 292(6), 320–324 (2002)

    Article  MATH  Google Scholar 

  42. Wang, Z.-L., Shi, X.-R.: Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller. Appl. Math. Comput. 215(3), 1091–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Wang, Z., Shi, X.: Lag synchronization of multiple identical Hindmarsh-Rose neuron models coupled in a ring structure. Nonlinear Dynam. 60(3), 375–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shi, X., Wang, Z.: Adaptive synchronization of time delay Hindmarsh–Rose neuron system via self-feedback. Nonlinear Dynam. 69(4), 2147–2153 (2012)

    Article  MathSciNet  Google Scholar 

  45. Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the Hindmarsh-Rose neuron with time delays. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2557845

  46. Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58(6), 1007–1014 (2015)

    Article  Google Scholar 

  47. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Article  MathSciNet  Google Scholar 

  48. Ma, J., Xu, J.: An introduction and guidance for neurodynamics. Sci. Bull. 60(22), 1969–1971 (2015)

    Article  Google Scholar 

  49. Qin, H., Ma, J., Jin, W., Wang, C.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57(5), 936–946 (2014)

    Article  MathSciNet  Google Scholar 

  50. Herrmann, C.S., Klaus, A.: Autapse turns neuron into oscillator. Int. J. Bifurcat. Chaos 14(2), 623–633 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-delay Systems. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  52. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay. Automatica 49(8), 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imali T. Hettiarachchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hettiarachchi, I.T., Lakshmanan, S., Bhatti, A. et al. Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dyn 86, 1249–1262 (2016). https://doi.org/10.1007/s11071-016-2961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2961-4

Keywords

Navigation