Skip to main content
Log in

Analysis on dynamics of a cutting tool with the thermal distortion in turning process

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The thermal distortion of the cutting tool is an important factor that can affect machining precision. A new single degree of freedom chatter model of the regenerative orthogonal turning process takes into account the thermal distortion of the cutting tool is proposed in this work. The cutting tool of the turning system is modeled as one-dimensional oscillator with nonlinear stiffness and the thermal distortion both in axial and in radial direction. Numerical method is employed to explore the effect of the largest thermal distortion on the dynamics of the cutting system. The results show that the motion of the cutting tool will transition among periodic, quasi-periodic, and chaotic motions with the time delay and the largest thermal distortion changed, at the same time, the different bifurcation patterns are found that indicate the dynamics of the cutting system is influenced by the largest thermal distortion. In addition, the stability of cutting system will be broken earlier with the increase in the largest thermal distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Budak, E., Ozlu, E.: Analytical modeling of chatter stability in turning and boring operations: a multi-dimensional approach. CIRP Ann. Manuf. Technol. 56(1), 401–404 (2007)

    Article  Google Scholar 

  2. Insperger, T., Stépán, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47(1–3), 275–283 (2007)

    MATH  Google Scholar 

  3. Siddhpura, M., Paurobally, R.: A review of chatter vibration research in turning. Int. J. Mach. Tools Manuf. 61, 27–47 (2012)

    Article  Google Scholar 

  4. Kim, P., Seok, J.: Bifurcation analyses on the chatter vibrations of a turning process with state-dependent delay. Nonlinear Dyn. 69(3), 891–912 (2012)

    Article  MathSciNet  Google Scholar 

  5. Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP Ann. Manuf. Technol. 44(1), 357–362 (1995)

  6. Insperger, T., Stépán, G., Bayly, P.V., Mann, B.P.: Multiple chatter frequencies in milling processes. J. Sound Vib. 262(2), 333–345 (2003)

    Article  Google Scholar 

  7. Long, X.H., Balachandran, B., Mann, B.P.: Dynamics of milling processes with variable time delays. Nonlinear Dyn. 47(1–3), 49–63 (2007)

    MATH  Google Scholar 

  8. Arvajeh, T., Ismail, F.: Machining stability in high-speed drilling—part 1: modeling vibration stability in bending. Int. J. Mach. Tools Manuf. 46(12), 1563–1572 (2006)

    Article  Google Scholar 

  9. Arvajeh, T., Ismail, F.: Machining stability in high speed drilling—part 2: time domain simulation of a bending-torsional model and experimental validations. Int. J. Mach. Tools Manuf. 46(12), 1573–1581 (2006)

    Article  Google Scholar 

  10. Campbell, S.A., Stone, E.: Analysis of the chatter instability in a nonlinear model for drilling. J. Comput. Nonlinear Dyn. 1(4), 294–306 (2006)

    Article  Google Scholar 

  11. Edhi, E., Hoshi, T.: Stabilization of high frequency chatter vibration in fine boring by friction damper. Precis. Eng. 25(3), 224–234 (2001)

    Article  Google Scholar 

  12. Atabey, F., Lazoglu, I., Altintas, Y.: Mechanics of boring processes—part II–multi-insert boring heads. Int. J. Mach. Tools Manuf. 43(5), 477–484 (2003)

    Article  Google Scholar 

  13. González-Brambila, O., Rubio, E., Jáuregui, J.C., Herrera-Ruiz, G.: Chattering detection in cylindrical grinding processes using the wavelet transform. Int. J. Mach. Tools Manuf. 46(15), 1934–1938 (2006)

    Article  Google Scholar 

  14. Yan, Y., Xu, J., Wang, W.: Nonlinear chatter with large amplitude in a cylindrical plunge grinding process. Nonlinear Dyn. 69(4), 1781–1793 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tobias, S.A.: Machine tool vibration research. Int. J. Mach. Tool Des. Res. 1(1), 1–14 (1961)

    Article  MathSciNet  Google Scholar 

  16. Tobias, S.A.: Machine-tool vibration. Blackie and Son Limited, London (1965)

    Google Scholar 

  17. Wiercigroch, M., Budak, E.: Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1781), 663–693 (2001)

    Article  MATH  Google Scholar 

  18. Taylor, F.W.: The art of cutting metals. Sci. Am. 63, 25942–25944 (1907)

    Article  Google Scholar 

  19. Tobias, S.A., Fishwick, W.: The chatter of lathe tools under orthogonal cutting conditions. Trans. ASME 80(2), 1079–1088 (1958)

    Google Scholar 

  20. Hanna, N.H., Tobias, S.A.: A theory of nonlinear regenerative chatter. J. Manuf. Sci. Eng. 96(1), 247–255 (1974)

    Google Scholar 

  21. Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics—applications to machining dynamics. J. Manuf. Sci. Eng. 119(4A), 485–493 (1997)

    Article  Google Scholar 

  22. Nayfeh, A.H., Nayfeh, N.A.: Analysis of the cutting tool on a lathe. Nonlinear Dyn. 63(3), 395–416 (2011)

    Article  Google Scholar 

  23. Deshpande, N., Fofana, M.S.: Nonlinear regenerative chatter in turning. Robot. Comput Integr. Manuf. 17(1), 107–112 (2001)

    Article  Google Scholar 

  24. Nosyreva, E.P., Molinari, A.: Analysis of nonlinear vibrations in metal cutting. Int. J. Mech. Sci. 40(8), 735–748 (1998)

    Article  MATH  Google Scholar 

  25. Moradi, H., Bakhtiari-Nejad, F., Movahhedy, M.R., Ahmadian, M.T.: Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: forced oscillation and stability analysis. Mech. Mach. Theory 45(8), 1050–1066 (2010)

    Article  MATH  Google Scholar 

  26. Banihasan, M., Bakhtiari-Nejad, F.: Chaotic vibrations in high-speed milling. Nonlinear Dyn. 66(4), 557–574 (2011)

    Article  MATH  Google Scholar 

  27. Litak, G., Schubert, S., Radons, G.: Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn. 69(3), 1255–1262 (2012)

    Article  MathSciNet  Google Scholar 

  28. Moradi, H., Vossoughi, G., Movahhedy, M.R.: Bifurcation analysis of nonlinear milling process with tool wear and process damping: sub-harmonic resonance under regenerative chatter. Int. J. Mech. Sci. 85, 1–19 (2014)

    Article  Google Scholar 

  29. Zhou, R., Zhang, W., Zu, J.W.: Analysis on nonlinear dynamics of a thin-plate workpiece in milling process with cutting force nonlinearities. J. Mech. Sci. Technol. 28(7), 2511–2526 (2014)

    Article  Google Scholar 

  30. Rusinek, R., Wiercigroch, M., Wahi, P.: Orthogonal cutting process modelling considering tool-workpiece frictional effect. Proced. CIRP 31, 429–434 (2015)

    Article  Google Scholar 

  31. Cao, H.J., Zhu, L.B., Li, X.G., Chen, P., Chen Y.P.: Thermal error compensation of dry hobbing machine tool considering workpiece thermal deformation. Int. J. Adv. Manuf. Technol. (2016). doi:10.1007/s00170-015-8314-5

  32. Rusinek, R., Mitura, A., Warminski, J.: Time delay Duffing’s systems: chaos and chatter control. Meccanica 49(8), 1869–1877 (2014)

  33. Ma, F.B., Chen, X.J.: Effect of thermal deformation of cutting tools on detail process precision. Coal Mine Mach. 9, 27–29 (2004). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the National Natural Science Foundation of China under Grant Nos. 11372122 and 51465029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuyin Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Jin, W., Wang, G. et al. Analysis on dynamics of a cutting tool with the thermal distortion in turning process. Nonlinear Dyn 86, 1183–1191 (2016). https://doi.org/10.1007/s11071-016-2956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2956-1

Keywords

Navigation