Skip to main content
Log in

Influence of Feed Velocity on Nonlinear Dynamics of Turning Process

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A more comprehensive orthogonal turning model is developed in order to further study the influence of feed velocity on frictional chatter. Nonlinear dynamic behavior of the cutting tool in two directions is presented by using bifurcation diagram, phase portrait, and Poincaré section. It can be found that the cutting tool has a variety of dynamic behaviors at different feed velocity and cutting velocity, such as periodic motion, quasi-periodic motion, and chaotic motion. Furthermore, the vibration displacement of the cutting tool is affected by the feed velocity, especially for relatively high feed velocity which will result in the cutting tool vibration displacement increase in the cutting direction but a decrease in the feed direction. In addition, it is clear that the stick–slip phenomenon only appears in the cutting direction in our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363.

    Article  Google Scholar 

  2. Wiercigroch, M., & Krivtsov, A. M. (2001). Frictional chatter in orthogonal metal cutting. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 359(1781), 713–738.

    Article  Google Scholar 

  3. Rusinek, R., Wiercigroch, M., & Wahi, P. (2015). Orthogonal cutting process modelling considering tool-workpiece frictional effect. Procedia CIRP, 31, 429–434.

    Article  Google Scholar 

  4. Kecik, K., Rusinek, R., & Warminski, J. (2013). Modeling of high-speed milling process with frictional effect. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 227(1), 3–11.

    Google Scholar 

  5. Faassen, R. P. H., Van de Wouw, N., Oosterling, J. A. J., & Nijmeijer, H. (2003). Prediction of regenerative chatter by modelling and analysis of high-speed milling. International Journal of Machine Tools and Manufacture, 43(14), 1437–1446.

    Article  Google Scholar 

  6. Molnár, T. G., Insperger, T., & Stépán, G. (2016). State-dependent distributed-delay model of orthogonal cutting. Nonlinear Dynamics, 84(3), 1147–1156.

    Article  Google Scholar 

  7. Nayfeh, A. H., & Nayfeh, N. A. (2011). Analysis of the cutting tool on a lathe. Nonlinear Dynamics, 63(3), 395–416.

    Article  MathSciNet  Google Scholar 

  8. Kalmár-Nagy, T., Stépán, G., & Moon, F. C. (2015). Subcritical hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dynamics, 26, 121–142.

    Article  MathSciNet  Google Scholar 

  9. Tlusty, .J, Polacek, M. The stability of the machine tool against self-excited vibration in machining. Mach Sci Technol.1963.

  10. Wiercigroch, M., & Budak, E. (2001). Sources of nonlinearities, chatter generation and suppression in metal cutting. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 359(1781), 663–693.

    Article  Google Scholar 

  11. Taylor, F. W. (1906). On the art of cutting metals. American Society of Mechanical Engineers., 63(1619), 25942–25944.

    Google Scholar 

  12. Arnold, R. (1946). Cutting tools research: report of subcommittee on carbide tools: the mechanism of tool vibration in the cutting of steel. Proceedings of the Institution of Mechanical Engineers, 154(1), 261–284.

    Article  Google Scholar 

  13. Grabec, I. (1986). Chaos generated by the cutting process. Physics Letters A, 117, 384–386.

    Article  MathSciNet  Google Scholar 

  14. Kotaiah, K. R., & Srinivas, J. (2010). Dynamic analysis of a turning tool with a discrete model of the workpiece. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(2), 207–215.

    Article  Google Scholar 

  15. Nosyreva, E. P., & Molinari, A. (1998). Analysis of nonlinear vibrations in metal cutting. International Journal of Mechanical Sciences, 40, 735–748.

    Article  Google Scholar 

  16. Vogler, M. P., Devor, R. E., & Kapoor, S. G. (2002). Nonlinear influence of effective lead angle in turning process stability. Journal of Manufacturing Science and Engineering Transaction of the ASME, 124, 473–475.

    Article  Google Scholar 

  17. Rusinek, R., Wiercigroch, M., & Wahi, P. (2014). Influence of tool flank forces on complex dynamics of cutting process. International Journal of Bifurcation and Chaos, 24(09), 1450115.

    Article  MathSciNet  Google Scholar 

  18. Rusinek, R., Wiercigroch, M., & Wahi, P. (2014). Modelling of frictional chatter in metal cutting. International Journal of Mechanical Sciences, 89, 167–176.

    Article  Google Scholar 

  19. Wang, A., Jin, W. Y., Wang, G. P., & Li, X. Y. (2016). Analysis on dynamics of a cutting tool with the thermal distortion in turning process. Nonlinear Dynamics, 2, 1183–1191.

    Article  Google Scholar 

  20. Weremczuk, A., & Rusinek, R. (2017). Influence of frictional mechanism on chatter vibrations in the cutting process–analytical approach. The International Journal of Advanced Manufacturing Technology, 89(9–12), 2837–2844.

    Article  Google Scholar 

  21. Yan, Y., Xu, J., & Wiercigroch, M. (2016). Regenerative chatter in self-interrupted plunge grinding. Meccanica, 51, 3185–3202.

    Article  MathSciNet  Google Scholar 

  22. Yan, Y., Xu, J., & Wiercigroch, M. (2017). Influence of workpiece imbalance on regenerative and frictional grinding chatters. Procedia IUTAM, 22, 146–153.

    Article  Google Scholar 

  23. Yi, S., Nelson, P. W., & Ulsoy, A. G. (2007). Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences and Engineering, 4(2), 355–368.

    Article  MathSciNet  Google Scholar 

  24. Wang, A., Jin, W. Y., Chen, W. C., Feng, R. C., & Xu, C. W. (2018). Bifurcation and chaotic vibration of frictional chatter in turning process. Advances in Mechanical Engineering, 10(4), 168781401877126.

    Article  Google Scholar 

  25. Grossi, N., Montevecchi, F., Sallese, L., Scippa, A., & Campatelli, G. (2018). Correction to: Chatter stability prediction for high-speedmilling through a novel experimental-analytical approach. The International Journal of Advanced Manufacturing Technology, 96(9), 4541–4544.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (No. 11372122) and Science and Technology Program of Gansu Province of China (No. 1610RJYA020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuyin Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Substituting Eqs. 2,3,4 and 5 into Eq. (1), we obtain the vibration response of the cutting tool motion in both directions

$$\begin{aligned} & m\ddot{x} + c_{x} \dot{x} + k_{x} x = K(2\pi v_{f} /\Omega - y)H(2\pi v_{f} /\Omega - y)\mu_{x} ({\text{sgn}} (\Omega R - \dot{x}) - a_{x} (\Omega R - \dot{x}) + \beta_{x} (\Omega R - \dot{x})^{3} ) + Q(2\pi v_{f} /\Omega - y)(c(\Omega R - \dot{x} - 1)^{2} + 1)H(2\pi v_{f} /\Omega - y)H(\Omega R - \dot{x}) \\ & m\ddot{y} + c_{y} \dot{y} + k_{y} y = Q(2\pi v_{f} /\Omega - y)(c(\Omega R - \dot{x} - 1)^{2} + 1)H(2\pi v_{f} /\Omega - y)H(\Omega R - \dot{x})\mu_{y} ({\text{sgn}} ((\Omega R - \dot{x})\tan \varphi + v_{f} - \dot{y}) - a_{y} ((\Omega R - \dot{x})\tan \varphi + v_{f} - \dot{y}) + \beta_{y} ((\Omega R - \dot{x})\tan \varphi + v_{f} - \dot{y})^{3} ) + K(2\pi v_{f} /\Omega - y)H(2\pi v_{f} /\Omega - y) \\ \end{aligned}$$
(6)

In order to reduce the number of parameters, Eq. (6) is simplified as the following dimensionless equation.

$$\begin{aligned} & \ddot{x} + 2\xi_{x} \dot{x} + x = k(2\pi v_{f} /\Omega - y)H(2\pi v_{f} /\Omega - y)\mu_{x} ({\text{sgn}} (\Omega R - \dot{x}) - a_{x} (\Omega R - \dot{x}) + \beta_{x} (\Omega R - \dot{x})^{3} ) + q(2\pi v_{f} /\Omega - y)(c(\Omega R - \dot{x} - 1)^{2} + 1)H(2\pi v_{f} /\Omega - y)H(\Omega R - \dot{x}) \\ & \ddot{y} + 2\xi_{y} \sqrt \alpha \dot{y} + \alpha y = q(2\pi v_{f} /\Omega - y)(c(\Omega R - \dot{x} - 1)^{2} + 1)H(2\pi v_{f} /\Omega - y)H(\Omega R - \dot{x})\mu_{y} ({\text{sgn}} ((\Omega R - \dot{x})\tan \varphi + v_{f} - \dot{y}) - a_{y} ((\Omega R - \dot{x})\tan \varphi + v_{f} - \dot{y}) + \beta_{y} ((\Omega R - \dot{x})\tan \varphi + v_{f} - \dot{y})^{3} ) + k(2\pi v_{f} /\Omega - y)H(2\pi v_{f} /\Omega - y) \\ \end{aligned}$$
(7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Jin, W. Influence of Feed Velocity on Nonlinear Dynamics of Turning Process. Int. J. Precis. Eng. Manuf. 22, 1069–1079 (2021). https://doi.org/10.1007/s12541-021-00516-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00516-y

Keywords

Navigation