Skip to main content
Log in

Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a fractional-order prediction-based feedback control scheme (Fo-PbFC) is proposed to stabilize the unstable equilibrium points and to synchronize the fractional-order chaotic systems (FoCS). The design of Fo-PbFC, derived and based on Lyapunov stabilization arguments and matrix measure, is theoretically rigorous and represents a powerful and simple approach to provide a reasonable trade-off between computational overhead, storage space, numerical accuracy and stability analysis in control and synchronization of a class of FoCS. Numerical simulations are also provided to verify the validity and the feasibility of the proposed scheme by considering the fractional-order Newton–Leipnik chaotic and the fractional-order Mathieu–Van Der Pol hyperchaotic systems as illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Control: Fundamentals and Applications. Advanced Industrial Control Series. Springer, London (2010)

    Book  MATH  Google Scholar 

  2. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers Series. Lecture Notes in Electrical Engineering. Springer Editions (2011)

  4. Maione, G., Nigmatullin, R.R., Tenreiro Machado, J.A., Sabatier, J.: New challenges in fractional systems 2014. Math. Probl. Eng. (2015). doi:10.1155/2015/870841

  5. Arecchi, F.T., Boccaletti, S., Ciofini, M., Meucci, R., Grebogi, C.: The control of chaos: theoretical schemes and experimental realizations. Int. J. Bifurcat. Chaos. 8, 1643–1655 (1998)

    Article  MATH  Google Scholar 

  6. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H.K., Maza, D.: The control of chaos: theory and application. Phys. Rep. 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  7. Nozaki, R., Balthazar, J.M., Tusset, A.M., Pontes B.R., Jr., Bueno, A.M.: Nonlinear control system applied to atomic force microscope including parametric errors. J. Control Autom. Electr. Syst. 24, 223–231 (2013)

  8. Tusset, A.M., Piccirillo, V., Bueno, A.M., Balthazar, J.M., Sado, D., Felix, J.L.P., Lopes Rebello, R.M.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control. 20, 1–17 (2015)

    Google Scholar 

  9. Balthazar, J.M., Tusset, A.M., Thomaz De Souza, S.L., Bueno, A.M.: Microcantilever chaotic motion suppression in tapping mode atomic force microscope. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227(8), 1730–1741 (2013)

    Article  Google Scholar 

  10. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)

    Book  MATH  Google Scholar 

  11. Chen, D., Liu, Y.X., Ma, X.Y.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67, 893–901 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Soliton fract. 39, 1595–1603 (2009)

    Article  MATH  Google Scholar 

  13. Sadeghian, H., Salarieh, H., Alasty, A., Meghdari, A.: On the control of chaos via fractional delayed feedback method. Comput. Math. Appl. 62, 1482–1491 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, L., He, Y., Chai, Y., Wu, R.: New results on stability and stabilization of a class on nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Trans. 56, 102–110 (2015)

    Article  Google Scholar 

  16. Wen, X.J., Wu, Z.M., Lu, J.G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II Exp. Briefs 55(11), 1178–1182 (2008)

    Article  Google Scholar 

  17. Faieghi, M.R., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72, 301–309 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y., Li, J.: Stability analysis of fractional order systems based on T-S fuzzy model with the fractional order \(\alpha : 0< \quad \alpha \quad < 1\). Nonlinear Dyn. 78, 2909–2919 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Agrawal, S.K., Das, S.: Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method. J. Process Contr. 24, 517–530 (2014)

    Article  Google Scholar 

  20. Wang, C.H., Chen, C.Y.: Intelligent chaos synchronization of fractional-order systems via mean-based slide mode controller. Int. J. Fuzzy. Syst. 17(2), 144–157 (2015)

    Article  MathSciNet  Google Scholar 

  21. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80, 249–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuntanapreeda, S.: Tensor product model transformation based control and synchronization of a class of fractional-order chaotic systems. Asian J. Control. 17(2), 371–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ding, D., Qi, D., Meng, Y., Xu, L.: Nonlinear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems. IET Control Theory A. 9(5), 681–690 (2014)

    Article  Google Scholar 

  24. Ding, D., Qi, D., Peng, J., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81, 667–677 (2015)

    Article  MathSciNet  Google Scholar 

  25. Chen, L., Wu, R., He, Y., Chai, Y.: Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dyn. 80, 51–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xi, H., Yu, S., Zhang, R., Xu, L.: Adaptive impulsive synchronization for a class of fractional-orderchaotic and hyperchaotic. Optik 125, 2036–2040 (2014)

    Article  Google Scholar 

  27. Ushio, T., Yamamoto, S.: Prediction-based control of chaos. Phys. Lett. A. 264, 30–35 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A. 170(6), 421–428 (1992)

    Article  Google Scholar 

  29. Braverman, E., Liz, E.: On stabilization of equilibria using predictive control with and without pulses. Comput. Math. Appl. 64, 2192–2201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Boukabou, A., Chebbah, A., Mansouri, N.: Predictive control of continuous chaotic systems. Int. J. Bifurc. Chaos 18(2), 587–592 (2008)

    Article  Google Scholar 

  31. Hadef, S., Boukabou, A.: Control of multi-scroll Chen system. J. Frankl. Inst. 351, 2728–2741 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wenxian, X., Zhen, L., Wenlong, W., Xiali, Z.: Controlling chaos for fractional-order Genesio–Tesi chaotic system using prediction-based feedback control. Int. J. Adv. Comput. Technol. 4(17), 280–287 (2012)

    Google Scholar 

  33. Zheng, Y.: Fuzzy prediction-based feedback control of fractional-order chaotic systems. Optik 126, 5645–5649 (2015)

    Article  Google Scholar 

  34. Oustaloup, A.: La Commande CRONE: Commande Robuste d’Ordre Non Entier. Editions Hermès, Paris (1991)

    Google Scholar 

  35. Oustaloup, A.: La Dérivation non entière. Hermès, Paris (1991)

    MATH  Google Scholar 

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  37. Zhou, P., Ding, R.: Control and synchronization of the fractional-order Lorenz chaotic system via fractional-order derivative. Math. Probl. Eng. (2012). doi:10.1155/2012/214169

  38. Li, T., Wang, Y., Yang, Y.: Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller. Optik 125(22), 6700–6705 (2014)

    Article  Google Scholar 

  39. Si, G., Sun, Z., Zhang, Y., Chen, W.: Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Anal. Real World Appl. 13, 1761–1771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tavazoei, M.S., Haeri, M.: Stabilization of unstable fixed points of chaotic fractional-order systems by a state fractional PI controller. Eur. J. Control. 3, 247–257 (2008)

    Article  MathSciNet  Google Scholar 

  41. Li, R., Chen, W.: Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems. Nonlinear Dyn. 76, 785–795 (2014)

  42. Jie, L., Xinjie, L., Junchan, Z.: Prediction-control based feedback control of a fractional order unified chaotic system. In: 2011 Chinese on Control and Decision Conference (CCDC), 2093–2097 (2011)

  43. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  44. Barbosa, R.S., Tenreiro Machado, J.A., Jesus, I.S.: Effect of fractional orders in the velocity control of a servo system. Comput. Math. Appl. 59, 1679–1686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ikeda, F.: A numerical algorithm of discrete fractional calculus byusing Inhomogeneous sampling data. Trans. Soc. Instrum. Control Eng. E–6(1), 1–8 (2007)

    Google Scholar 

  46. Sprouse, B.P., MacDonald, C.L., Silva, G.A.: Computational efficiency of fractional diffusion using adaptive time step memory. 4th IFAC Workshop on Fractional Differentiation and Its Applications (2010)

  47. Gao, Z., Liao, X.: Discretization algorithm for fractional order integral by Haar wavelet approximation. Appl. Math. Comput. 218(5), 1917–1926 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 62, 902–917 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1998)

  50. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236, 2754–2762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vidyasagar, M.: On matrix measures and convex Lyapunov functions. J. Math. Anal. Appl. 62, 90–103 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  54. He, W., Cao, J.: Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. Chaos 19, 13–18 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Pan, L., Cao, J., Hu, J.: Synchronization for complex networks with Markov switching via matrix measure approach. Appl. Math. Modell. (2015). doi:10.1016/j.apm.2015.01.027

  56. He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55, 55–65 (2009)

  57. Cao, J., Wan, Y.: Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Net. 53, 165–172 (2014)

    Article  MATH  Google Scholar 

  58. Haddad, W.M., Chellaboina, V.S.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  59. Ostalczyk, P., Brzeziński, D.W., Duch, T., Łaski, M., Sankowsk, D.: The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control. Cent. Eur. J. Phys. 11(6), 750–759 (2013)

    Google Scholar 

  60. Zhang, K., Wang, H., Fang, H.: Feedback control and hybrid projective synchronization of a fractional-order Newton–Leipnik system. Commun. Nonlinear Sci. Numer. Simulat. 17, 317–328 (2012)

  61. Vishal, K., Agrawal, S.K., DAS, S.: Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems. Pramana J. Phys. 86(1), 59–75 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Soukkou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukkou, A., Boukabou, A. & Leulmi, S. Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems. Nonlinear Dyn 85, 2183–2206 (2016). https://doi.org/10.1007/s11071-016-2823-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2823-0

Keywords

Navigation