Skip to main content
Log in

Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we have discussed the local stability of the Mathieu–van der Pol hyperchaotic system with the fractional-order derivative. The fractional Routh–Hurwitz stability conditions were provided and were used to discuss the stability. Feedback control method was used to control chaos in the Mathieu–van der Pol system with fractional-order derivative and after controlling the chaotic behaviour of the system the synchronization between the fractional-order hyperchaotic Mathieu–van der Pol system and controlled system was introduced. In this study, modified adaptive control methods with uncertain parameters at various equilibrium points were used. Also the analysis of control time with respect to different fractional-order derivatives is the key feature of this paper. Numerical simulation results achieved using Adams–Boshforth–Moulton method show that the method is effective and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. E N Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  2. I Podlubny, Fractional differential equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  3. R Hilfer, Applications of fractional calculus in physics (World Scientific, New Jersey, 2001)

    MATH  Google Scholar 

  4. E Ott, C Grebogi, and J A Yorke, Phys. Rev. Lett. 64, 1196 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  6. H J Yu and Y Z Liu, Phys. Lett. A 314, 292 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. S K Agrawal, M Srivastava and S Das, Chaos, Solitons and Fractals 45, 737 (2012)

    Article  ADS  Google Scholar 

  8. G H Erjaee and S Momani, Phys. Lett. A 372, 2350 (2008)

    Article  ADS  Google Scholar 

  9. K Zhang, H Wang, and H Fang, Commun. Nonlinear Sci. Numer. Simul. 17, 317 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  10. J Chen, L Jiao, J Wu, and X Wang, Nonlinear Anal. Real World Appl. 11, 3045 (2010)

    Article  Google Scholar 

  11. K S Sudheer and M Sabir, Chaos 20, 013115 (2010)

    Article  ADS  Google Scholar 

  12. H Dua, Q Zeng, C Wang, and M Ling, Nonlinear Anal. Real World Appl. 11, 705 (2010)

    Article  MathSciNet  Google Scholar 

  13. H H Chen, G J Sheu, Y L Lin, and C S Chen, Nonlinear Anal. Real World Appl. 70, 4393 (2009)

    Article  MathSciNet  Google Scholar 

  14. M Rafikov and J M Balthazar, Commun. Nonlinear Sci. Numer. Simul. 13, 1246 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. J H Park and O M Kwon, Chaos, Solitons and Fractals 23, 495 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. R A Guo, Phys. Lett. A 372, 5593 (2008)

    Article  ADS  Google Scholar 

  17. J Huang, Phys. Lett. A 372, 4799 (2008)

    Article  ADS  Google Scholar 

  18. S H Chen and J Lu, Phys. Lett. A 299, 353 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  19. M T Yassen, Chaos, Solitons and Fractals 23, 131 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. S K Agrawal, M Srivastava, and S Das, Nonlinear Dyn. 69, 2277 (2012)

    Article  MathSciNet  Google Scholar 

  21. X Wu and J Lü, Chaos, Solitons and Fractals 18, 721 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  22. D M Senejohnny and H Delavari, Commun. Nonlinear Sci. Numer. Simul. 17, 4373 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  23. Y Chai and L Q Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 3390 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  24. S H Chen and J Lu, Phys. Lett. A 299, 353 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  25. H Zhang, W Huang, Z Wang, and T Chai, Phys. Lett. A 350, 363 (2006)

    Article  ADS  Google Scholar 

  26. S K Agrawal and S Das, Nonlinear Dynam. 73, 907 (2013)

    Article  MathSciNet  Google Scholar 

  27. J H Park, Chaos, Solitons and Fractals 34, 1154 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. Q Jia, Phys. Lett. A 362, 424 (2007)

    Article  ADS  Google Scholar 

  29. X Y Chen and J F Lu, Phys. Lett. A 364, 123 (2007)

    Article  ADS  Google Scholar 

  30. Y Tang and J A Fang, Phys. Lett. A 372, 1816 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Z M Ge and S Y Li, Nonlinear Anal. 71, 4047 (2009)

    Article  MathSciNet  Google Scholar 

  32. Z M Ge and S Y Li, Appl. Math. Model. 35, 5245 (2011)

    Article  MathSciNet  Google Scholar 

  33. S Y Li, Appl. Soft Comput. 11, 4474 (2011)

    Article  Google Scholar 

  34. D Matignon, IMACS, IEEE-SMC Proceedings (Lille, France, 1996) Vol. 2, p. 963

  35. E Ahmed, A M A El-Sayed, and H A A El-Saka, Phys. Lett. A 358, 1 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  36. E Ahmed, A M A El-Sayed, and H A A El-Saka, J. Math. Anal. Appl. 325, 542 (2007)

    Article  MathSciNet  Google Scholar 

  37. A E Matouk, Phys. Lett. A 373, 2166 (2009)

    Article  ADS  Google Scholar 

  38. K Diethelm, J Ford, and A Freed, Numer. Algorithms 36, 31 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  39. K Diethelm and J Ford, Appl. Math. Comput. 154, 621 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors of this article express their heartfelt thanks to the reviewers for their valuable suggestions for the improvement of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KUMAR VISHAL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VISHAL, K., AGRAWAL, S.K. & DAS, S. Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems. Pramana - J Phys 86, 59–75 (2016). https://doi.org/10.1007/s12043-015-0989-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-015-0989-5

Keywords

PACS Nos

Navigation