Skip to main content
Log in

Location identification of nonlinearities in MDOF systems through order determination of state-space models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new time-domain approach to identify locations of nonlinearities in multiple-degree-of-freedom (MDOF) systems. The approach is based on the well-known subspace method and utilizes the analysis of all the subsystems in the original MDOF system to determine locations of nonlinearities. The advantage of the proposed method is that it requires little prior knowledge about the system and does not need sampling under varying force amplitudes. Moreover, the method only needs the sampling of displacement data and thus avoids repetitive direct measurements or indirect numerical differentiation or integration to achieve velocity and acceleration data. In addition, benefitting from the subspace method, the approach is robust in noisy environment. However, one inconvenient drawback of the method is that it may misjudge linearity as nonlinearity under two specific circumstances. Several numerical simulations are carried out to test the performance of the approach, and the results demonstrate the consistency with the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hernandez-Garcia, M.R., Masri, S.F., Ghanem, R., Figueiredo, E., Farrar, C.R.: A structural decomposition approach for detecting, locating, and quantifying nonlinearities in chain-like systems. Struct. Control Health Monit. 17, 761–777 (2010)

    Article  Google Scholar 

  2. Rubio, L., Fernandez-Saez, J.: A new efficient procedure to solve the nonlinear dynamics of a cracked rotor. Nonlinear Dyn. 70, 1731–1745 (2012)

    MathSciNet  Google Scholar 

  3. Kim, W.J., Perkins, N.C.: Harmonic balance/Galerkin method for non-smooth dynamic systems. J. Sound Vib. 261, 213–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wan, C., Jian, C., Kuo, J.K.: Bifurcation and chaos for porous squeeze film damper mounted rotor-bearing system lubricated with micropolar fluid. Nonlinear Dyn. 58, 697–714 (2009)

    Article  MATH  Google Scholar 

  5. Rajalingham, C., Rakheja, S.: Influence of suspension damper asymmetry on vehicle vibration response to ground excitation. J. Sound Vib. 266, 1117–1129 (2003)

    Article  Google Scholar 

  6. Lin, R.M., Ewins, D.J.: Location of localized stiffness nonlinearity using measured modal data. Mech. Syst. Signal Process. 9, 329–339 (1995)

    Article  Google Scholar 

  7. Lin, R.M.: Identification of the dynamic characteristic of nonlinear structures. Ph.D. Thesis, Imperial College, London, (1990)

  8. Al-Hadid, M.A., Wright, J.R.: Developments in the force-state mapping technique for nonlinear systems and the extension to the location of nonlinear elements in a lumped-parameter system. Mech. Syst. Signal Process. 3, 269–290 (1989)

    Article  MATH  Google Scholar 

  9. Fritzen, C.P., Jennewein, D., Kiefer, T.: Damage detection based on model updating methods. Mech. Syst. Signal Process. 12, 163–186 (1998)

    Article  Google Scholar 

  10. Trendafilova, I., Lenaerts, V., Kerschen, G., Golinval, J.C., Van Brussel, H.: Detection, localization and identification of nonlinearities in structural dynamics. In: Proceedings of the International Seminar on Modal Analysis (ISMA), Leuven (2000)

  11. Josefsson, A., Magnevall, M., Ahlin, K., Broman, G.: Spatial location identification of structural nonlinearities from random data. Mech. Syst. Signal Process. 27, 410–418 (2012)

    Article  Google Scholar 

  12. Peng, Z.K., Meng, G., Lang, Z.Q., Chu, F.L., Billings, S.A.: On the distribution of nonlinear effects in locally nonlinear one-dimensional chain type structures. Int. J. Mech. Sci. 53, 226–235 (2011)

    Article  Google Scholar 

  13. Lang, Z.Q., Park, G., Farrar, C.R., Todd, M.D., et al.: Transmissibility of nonlinear output frequency response functions with application in detection and location of damage in MDOF structural systems. Int. J. Nonlinear Mech. 46, 841–853 (2011)

    Article  Google Scholar 

  14. Masri, S.F., Caughey, T.K.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46, 433–447 (1979)

    Article  MATH  Google Scholar 

  15. Crawley, E.F., Aubert, A.C.: Identification of nonlinear structural elements by force-state mapping. AIAA J. 24, 155–162 (1986)

    Article  Google Scholar 

  16. Crawley, E.F., O’Donnell, K.J.: Identification of nonlinear system parameters in joints using the force-state mapping technique. AIAA Pap. 86–1013, 659–667 (1986)

    Google Scholar 

  17. Mohammad, K.S., Worden, K., Tomlinson, G.R.: Direct parameter for linear and nonlinear structures. J. Sound Vib. 152, 471–499 (1991)

    Article  MATH  Google Scholar 

  18. Van Overschee, P., DeMoor, B.: Subspace Identification for Linear Systems: Theory, Implementation, Application. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  19. Ljung, L.: System Identification: Theory for the User. Prentic-Hall, Englewood Cliffs, NJ (1999)

    Book  MATH  Google Scholar 

  20. Favoreel, W., DeMoor, B., Van Overschee, P.: Subspace state space system identification for industrial processes. J. Process Control 10, 149–155 (2000)

    Article  Google Scholar 

  21. Wang, D.Q., Ding, F., Liu, X.M.: Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn. 75, 49–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Van Overschee, P., DeMoor, B.: N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 20, 75–93 (1994)

    Article  Google Scholar 

  23. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30(1), 61–74 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Larimore, W.E.: Canonical variate analysis in identification, filtering and adaptive control. In: Proceedings of 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, pp. 596–604 (1990)

  25. Viberg, M.: On subspace-based methods for the identification of linear time-invariant systems. Automatica 31(12), 1835–1852 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hillis, A.J., Neild, S.A., Drinkwater, B.W., Wilcox, P.D.: Global crack detection using bispectral analysis. Proc. R. Soc. A 462, 1515–1530 (2006)

    Article  MATH  Google Scholar 

  27. Rivola, A., White, P.R.: Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks. J. Sound Vib. 216, 889–910 (1998)

    Article  Google Scholar 

  28. Sinha, J.K.: Higher order coherences for fatigue crack detection. Eng. Struct. 31, 534–538 (2009)

    Article  Google Scholar 

  29. Nichols, J.M., Olson, C.C.: Optimal bispectral detection of weak, quadratic nonlinearities in structural systems. J. Sound Vib. 329, 1165–1176 (2010)

    Article  Google Scholar 

  30. Nichols, J.M., Olson, C.C., Michalowicz, J.V., Bucholtz, F.: The bispectrum and bicoherence for quadratically nonlinear systems subject to non-Gaussian inputs. IEEE Trans. Signal Process. 57, 3879–3890 (2009)

    Article  MathSciNet  Google Scholar 

  31. Hosseini, S.M., Johansen, T.A., Fatehi, A.: Comparison of nonlinearity measures based on time series analysis for nonlinearity detection. Model. Identif. Control 32, 123–140 (2011)

    Article  Google Scholar 

  32. Gautama, T., Mandic, D.P., Van Hulle, M.M.: The delay vector variance method for detecting determinism and nonlinearity in time series. Phys. D 190, 167–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hou, S.M., Li, Y.R., Zhao, S.X.: Detecting the nonlinearity in time series from continuous dynamic systems based on delay vector variance method. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 1, 169–174 (2007)

    Google Scholar 

  34. Hou, S.M., Li, Y.R.: Detecting nonlinearity from a continuous dynamic system based on the delay vector variance method and its application to gear fault identification. Nonlinear Dyn. 60, 141–148 (2010)

    Article  MATH  Google Scholar 

  35. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712 (1980)

    Article  Google Scholar 

  36. Feeny, B.F., Liang, J.W.: Phase-space reconstructions and stick-slip. Nonlinear Dyn. 13, 39–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Soleimani, A., Khadem, S.E.: Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos Solitons Fractals 78, 61–75 (2015)

  38. Bovsunovsky, A.P., Surace, C.: Considerations regarding superharmonic vibrations of a cracked beam and the variation in damping caused by the presence of the crack. J. Sound Vib. 288, 865–886 (2005)

    Article  Google Scholar 

  39. Saavedra, P.N., Cuitino, L.A.: Crack detection and vibration behavior of cracked beams. Comput. Struct. 79, 1451–1459 (2001)

    Article  Google Scholar 

  40. Tsyfansky, S.L., Beresnevich, V.I.: Nonlinear vibration method for detection of fatigue cracks in aircraft wings. J. Sound Vib. 236, 49–60 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge that the work was supported by the National Science Fund for Distinguished Young Scholars (11125209) and the National Natural Science Foundation of China (11472170, 51121063) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M.W., Peng, Z.K., Dong, X.J. et al. Location identification of nonlinearities in MDOF systems through order determination of state-space models. Nonlinear Dyn 84, 1837–1852 (2016). https://doi.org/10.1007/s11071-016-2609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2609-4

Keywords

Navigation