Skip to main content
Log in

Bifurcations of the symmetric quasi-periodic motion and Lyapunov dimension of a vibro-impact system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under the suitable parameter combination, the vibro-impact system with symmetry exhibits symmetric quasi-periodic motions in the vicinity of Neimark–Sacker bifurcation (i.e., NS bifurcation) point satisfying 1:2 resonant conditions and double Neimark–Sacker bifurcation (i.e., NS–NS bifurcation) point. Based on the fact that the Poincaré map P is the second iteration of another virtual implicit map Q, the coexistence and symmetry of the attractor of the Poincaré map is discussed by means of the limit set theory. The map Q can capture two conjugate limit sets and hence can capture two conjugate quasi-periodic motions. Based on the Poincaré map, QR method is used to compute Lyapunov dimension, which can be used to characterize various quasi-periodic motions. Numerical simulation shows that the symmetric quasi-periodic motion can lose the stability and bifurcate into various subharmonic quasi-periodic motions via period-doubling bifurcation. Torus bifurcation of the symmetric quasi-periodic motion can also take place, which induces to a symmetric torus in the Poincaré section. Bifurcation of quasi-periodic motion will give birth to the coexistence of quasi-periodic motion. It is shown that all quasi-periodic attractors have at least a zero Lyapunov exponent, but various quasi-periodic attractors have different Lyapunov dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84(2), 173–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Shaw, S.W.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 92(2), 199–212 (1985)

    Article  Google Scholar 

  3. Whiston, G.S.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 115(2), 303–319 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Luo, A.C.J.: Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator. Chaos Solitons Fractals 19, 823–839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Luo, G.W., Xie, J.H.: Hopf bifurcation and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases. Int. J. Non-Linear Mech. 37(1), 19–34 (2002)

    Article  MATH  Google Scholar 

  6. Xie, J.H., Ding, W.C.: Hopf–Hopf bifurcation and invariant torus \(T^{2}\) of a vibro-impact system. Int. J. Non-Linear Mech. 40, 531–543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, W.C., Xie, J.H.: Dynamical analysis of a two-parameter family for a vibro-impact system in resonance cases. J. Sound Vib. 287, 101–115 (2005)

    Article  Google Scholar 

  8. Yue, Y., Xie, J.H.: Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system. Int. J. Non-Linear Mech. 48, 51–58 (2013)

    Article  Google Scholar 

  9. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145(2), 279–297 (1991)

    Article  Google Scholar 

  10. Mehran, K., Zahawi, B., Giaouris, D.: Investigation of the near-grazing behavior in hard-impact oscillators using model-based TS fuzzy approach. Nonlinear Dyn. 69, 1293–1309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kundu, S., Banerjee, S., Ing, J., Pavlovskaia, E., Wiercigroch, M.: Singularities in soft-impacting systems. Phys. D 241, 553–565 (2012)

    Article  MATH  Google Scholar 

  12. Ma, Y., Ing, J., Banerjee, S., Wiercigroch, M., Pavlovskaia, E.: The nature of the normal form map for soft impacting systems. Int. J. Non-Linear Mech. 43, 504–513 (2008)

    Article  Google Scholar 

  13. Chillingworth, D.R.J.: Dynamics of an impacting oscillator near a degenerate graze. Nonlinearity 23, 2723–2748 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, X., Dankowicz, H.: Unfolding degenerate grazing dynamics in impact actuators. Nonlinearity 19, 399–418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thota, P., Dankowicz, H.: Analysis of grazing bifurcations of quasiperiodic system attractors. Phys. D 220, 163–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kryzhevich, S., Wiercigroch, M.: Topology of vibro-impact systems in the neighborhood of grazing. Phys. D 241, 1919–1931 (2012)

    Article  MathSciNet  Google Scholar 

  17. Du, Z.D., Li, Y.R., Shen, J., Zhang, W.N.: Impact oscillators with homoclinic orbit tangent to the wall. Phys. D 245, 19–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. O’Connor, D., Luo, A.C.J.: On discontinuous dynamics of a freight train suspension system. Int. J. Bifurc. Chaos 12(24), 1450163 (2014)

  19. Gan, C.B., Lei, H.: Stochastic dynamic analysis of a kind of vibro-impact system under multiple harmonic and random excitations. J. Sound Vib. 330, 2174–2184 (2011)

  20. Zhai, H.M., Ding, Q.: Stability and nonlinear dynamics of a vibration system with oblique collisions. J. Sound Vib. 332, 3015–3031 (2013)

    Article  Google Scholar 

  21. Zhang, Y.X., Luo, G.W.: Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system. J. Sound Vib. 332, 5462–5475 (2013)

    Article  Google Scholar 

  22. Xu, H.D., Wen, G.L., Qin, Q.X., Zhou, H.A.: New explicit critical criterion of Hopf–Hopf bifurcation in a general discrete time system. Commun. Nonlinear Sci. Numer. Simul. 18, 2120–2128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feng, J.Q., Xu, W.: Grazing-induced chaostic crisis for periodic orbits in vibro-impact systems. Chin. J. Theor. Appl. Mech. 45(1), 30–36 (2013)

    Google Scholar 

  24. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 21, 4599–4608 (2012)

    Article  Google Scholar 

  25. Zhai, H.M., Ding, Q.: Stability and nonlinear dynamics of a vibration system with oblique collisions. J. Sound Vib. 332, 3015–3031 (2013)

    Article  Google Scholar 

  26. Brake, M.R.: The effect of the contact model on the impact-vibration response of continuous and discrete systems. J. Sound Vib. 332, 3849–3878 (2013)

    Article  Google Scholar 

  27. Yue, X.L., Xu, W., Wang, L.: Global analysis of boundary and interior crises in an elastic impact oscillator. Commun. Nonlinear Sci. Numer. Simul. 18, 3567–3574 (2013)

    Article  MathSciNet  Google Scholar 

  28. Wagg, D.J.: Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems. Nonlinear Dyn. 43(1–2), 137–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nordmark, A.B., Piiroinen, P.T.: Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dyn. 58(1–2), 85–106 (2009)

    Article  MATH  Google Scholar 

  30. Yue, Y., Xie, J.H.: Symmetry of the Poincaré map and its influence on bifurcations in a vibro-impact system. J. Sound Vib. 323, 292–312 (2009)

    Article  Google Scholar 

  31. Thomsen, J.J.: Vibrations and Stability: Advanced Theory, Analysis and Tools. Springer, New York (2003)

    Book  MATH  Google Scholar 

  32. Yue, Y., Xie, J.H.: Capturing the symmetry of attractors and the transition to symmetric chaos in a vibro-impact system. Int. J. Bifurc. Chaos 5(22), 1250109 (2012)

    Article  MATH  Google Scholar 

  33. Ben-Tal, A.: Symmetry restoration in a class of forced oscillators. Phys. D 171, 236–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multidimensional difference equations, pp. 228-237. Lecture Notes in Mathematics, Springer, New York (1979)

  36. Luo, G.W., Xie, J.H.: Hopf bifurcation of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 213(3), 391–408 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (11272268, 11172246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yue.

Appendices

Appendix 1: The phase angle and the integration constants

For the symmetric period n-2 motion of the vibro-impact system (i.e., the associated symmetric fixed point of the Poincaré map), the phase angle \(\tau \) in Eq. (8) is solved according to Eq. (12):

$$\begin{aligned} \tau _0 =\left\{ {{\begin{array}{l} {2\tan ^{-1}\left( \frac{S_{mn} \pm \sqrt{S_{mn}^2 +C_{mn}^2 -h_{mn}^2 }}{C_{mn} -h_{mn} }\right) ,h_{mn} \ne C_{mn} ;} \\ {2\tan ^{-1}\left( -\frac{h_{mn} +C_{mn} }{2S_{mn} }\right) ,h_{mn} =C_{mn} ;} \\ \end{array} }} \right. \end{aligned}$$
(52)

Inserting \(\tau =\tau _0 \) into Eq. (12), \(a_1 \) can be solved. Subsequently, all integration constants in Eq. (8) can be solved as

$$\begin{aligned} a_1= & {} \frac{-m_c \cos \tau _0 -m_s \sin \tau _0 -m_h }{m_a },\end{aligned}$$
(53)
$$\begin{aligned} a_2= & {} \frac{\left| U \right| }{\left| G \right| }a_1 ,\end{aligned}$$
(54)
$$\begin{aligned} a_3= & {} p_{o4} a_1 +d_{o4} \cos \tau _0 +f_{o4} \sin \tau _0 +\frac{h}{o_4 },\end{aligned}$$
(55)
$$\begin{aligned} b_1= & {} \frac{\left| Q \right| }{\left| G \right| }a_1 ,\end{aligned}$$
(56)
$$\begin{aligned} b_2= & {} \frac{\left| V \right| }{\left| G \right| }a_1 ,\end{aligned}$$
(57)
$$\begin{aligned} b_3= & {} p_{og3} a_1 +d_{og3} \cos \tau _0 +f_{og3} \sin \tau _0 +h_3 , \end{aligned}$$
(58)

where

$$\begin{aligned} C_{mn}= & {} m_c n_a -n_c m_a , \quad S_{mn} =m_s n_a -n_s m_a , \nonumber \\ h_{mn}= & {} m_h n_a -n_h m_a ,\end{aligned}$$
(59)
$$\begin{aligned} m_a= & {} p_6 +q_6 q_g +u_6 u_g +v_6 v_g\nonumber \\&+o_6 p_{o4} +g_6 p_{og3} , \nonumber \\ m_c= & {} o_6 d_{o4} +g_6 d_{og3} +d_6 , \nonumber \\ m_s= & {} o_6 f_{o4} +g_6 d_{og3} +f_6 ,\nonumber \\ m_h= & {} \frac{o_6 h}{o_4 }+g_6 h_3 ,\end{aligned}$$
(60)
$$\begin{aligned} n_a= & {} p_7 +q_7 q_g +u_7 u_g +v_7 v_g \nonumber \\&+\,o_7 p_{o4} +g_7 p_{og3} ,\nonumber \\ n_c= & {} o_7 d_{o4} +g_7 d_{og3} +d_7 , \nonumber \\ n_s= & {} o_7 f_{o4} +g_7 d_{og3} +f_7 , \quad m_h =\frac{o_7 h}{o_4 }+g_7 h_3 ,\nonumber \\\end{aligned}$$
(61)
$$\begin{aligned} G= & {} \left[ {{ \begin{array}{ccc} {q_1 }&{} {u_1 }&{} {v_1 } \\ {q_2 }&{} {u_2 }&{} {v_2 } \\ {q_5 }&{} {u_5 }&{} {v_5 } \\ \end{array} }} \right] ,\nonumber \\ Q= & {} \left[ {{\begin{array}{ccc} {-p_1 }&{} {u_1 }&{} {v_1 } \\ {-p_2 }&{} {u_2 }&{} {v_2 } \\ {-p_5 }&{} {u_5 }&{} {v_5 } \\ \end{array} }} \right] , \quad U=\left[ {{\begin{array}{ccc} {q_1 }&{} {-p_1 }&{} {v_1 } \\ {q_2 }&{} {-p_2 }&{} {v_2 } \\ {q_5 }&{} {-p_5 }&{} {v_5 } \\ \end{array} }} \right] , \nonumber \\ V= & {} \left[ {{\begin{array}{ccc} {q_1 }&{} {u_1 }&{} {-p_1 } \\ {q_2 }&{} {u_2 }&{} {-p_2 } \\ {q_5 }&{} {u_5 }&{} {-p_5 } \\ \end{array} }} \right] ,\end{aligned}$$
(62)
$$\begin{aligned} p_{o4}= & {} -\frac{p_4 +u_4 u_g }{o_4 }, \quad d_{o4} =-\frac{d_4 }{o_4 }, \nonumber \\ f_{o4}= & {} -\frac{f_4 }{o_4 },\end{aligned}$$
(63)
$$\begin{aligned} p_{og3}= & {} -\frac{o_3 }{g_3 }p_{o4} , \quad d_{og3} =-\frac{o_3 }{g_3 }d_{o4} , \quad f_{og3} =-\frac{o_3 }{g_3 }f_{o4} ,\nonumber \\ h_3= & {} -\frac{o_3 }{o_4 g_3 }h, \end{aligned}$$
(64)

where

$$\begin{aligned} p_1= & {} \psi _{11} (1+e_1 \cos (\omega _{d1} t_1 )), \quad q_1 =\psi _{11} e_1 \sin (\omega _{d1} t_1 ),\nonumber \\ u_1= & {} \psi _{12} (1+e_2 \cos (\omega _{d2} t_1 )), \quad v_1 =\psi _{12} e_2 \sin (\omega _{d2} t_1 ),\nonumber \\\end{aligned}$$
(65)
$$\begin{aligned} p_2= & {} \psi _{21} (1+e_1 \cos (\omega _{d1} t_1 )), \quad q_2 =\psi _{21} e_1 \sin (\omega _{d1} t_1 ),\nonumber \\ u_2= & {} \psi _{22} (1+e_2 \cos (\omega _{d2} t_1 )), \quad v_2 =\psi _{22} e_2 \sin (\omega _{d2} t_1 ),\nonumber \\\end{aligned}$$
(66)
$$\begin{aligned} o_3= & {} 1+e_3 \cos (\omega _{d3} t_1 ), \quad g_3 =e_3 \sin (\omega _{d3} t_1 ),\end{aligned}$$
(67)
$$\begin{aligned} p_4= & {} \psi _{21} , u_4 =\psi _{22} ,\quad , f_4=\psi _{21} A_1 +\psi _{22} A_2 -A_3 , \nonumber \\ d_4= & {} \psi _{21} B_1 +\psi _{22} B_2 -B_3 , \end{aligned}$$
(68)
$$\begin{aligned} p_5= & {} \psi _{11} \eta _1 +\psi _{11} e_1 (\eta _1 \cos (\omega _{d1} t_1 )+\omega _{d1} \sin (\omega _{d1} t_1 )),\nonumber \\ q_5= & {} -\psi _{11} \omega _{d1} -\psi _{11} e_1 (\omega _{d1} \cos (\omega _{d1} t_1 )\nonumber \\&-\eta _1 \sin (\omega _{d1} t_1 )),\nonumber \\ u_5= & {} \psi _{12} \eta _2 +\psi _{12} e_2 (\eta _2 \cos (\omega _{d2} t_1 )+\omega _{d2} \sin (\omega _{d2} t_1 )),\nonumber \\ v_5= & {} -\psi _{12} \omega _{d2} -\psi _{12} \nonumber \\&\times \,e_2 (\omega _{d2} \cos (\omega _{d2} t_1 )-\eta _2 \sin (\omega _{d2} t_1 )), \end{aligned}$$
(69)
$$\begin{aligned} p_6= & {} \psi _{21} \eta _1 +m_1 \psi _{21} e_1 (\eta _1 \cos (\omega _{d1} t_1)\nonumber \\&+\omega _{d1} \sin (\omega _{d1} t_1 )),\nonumber \\ q_6= & {} -\psi _{21} \omega _{d1} -m_1 \psi _{21} e_1 (\omega _{d1} \cos (\omega _{d1} t_1)\nonumber \\&-\eta _1 \sin (\omega _{d1} t_1 )),\nonumber \\ u_6= & {} \psi _{22} \eta _2 +m_1 \psi _{22} e_2 (\eta _2 \cos (\omega _{d2} t_1)\nonumber \\&+\omega _{d2} \sin (\omega _{d2} t_1 )),\nonumber \\ v_6= & {} -\psi _{22} \omega _{d2} -m_1 \psi _{22} e_2 (\omega _{d2} \cos (\omega _{d2} t_1)\nonumber \\&-\eta _2 \sin (\omega _{d2} t_1 )),\nonumber \\ o_6= & {} n_1 e_3 (\eta _3 \cos (\omega _{d3} t_1 )+\omega _{d3} \sin (\omega _{d3} t_1 )),\nonumber \\ g_6= & {} -n_1 e_3 (\omega _{d3} \cos (\omega _{d3} t_1 )-\eta _3 \sin (\omega _{d3} t_1 )),\nonumber \\ d_6= & {} (-\psi _{21} A_1 -\psi _{22} A_2 +m_1 \psi _{21} A_1 \nonumber \\&+m_1 \psi _{22} A_2 +n_1 A_3 )\omega ,\nonumber \\ f_6= & {} (\psi _{21} B_1 +\psi _{22} B_2 -m_1 \psi _{21} B_1 \nonumber \\&-m_1 \psi _{22} B_2 -n_1 B_3 )\omega , \end{aligned}$$
(70)
$$\begin{aligned} p_7= & {} m_2 \psi _{21} e_1 (\eta _1 \cos (\omega _{d1} t_1 )+\omega _{d1} \sin (\omega _{d1} t_1 )),\nonumber \\ q_7= & {} -m_2 \psi _{21} e_1 (\omega _{d1} \cos (\omega _{d1} t_1 )-\eta _1 \sin (\omega _{d1} t_1 )),\nonumber \\ u_7= & {} m_2 \psi _{22} e_2 (\eta _2 \cos (\omega _{d2} t_1 )+\omega _{d2} \sin (\omega _{d2} t_1 )),\nonumber \\ v_7= & {} -m_2 \psi _{22} e_2 (\omega _{d2} \cos (\omega _{d2} t_1 )-\eta _2 \sin (\omega _{d2} t_1 )),\nonumber \\ o_7= & {} \eta _3 +n_2 e_3 (\eta _3 \cos (\omega _{d3} t_1 )+\omega _{d3} \sin (\omega _{d3} t_1 )),\nonumber \\ g_7= & {} -\omega _{d3} -n_2 e_3 (\omega _{d3} \cos (\omega _{d3} t_1 )-\eta _3 \sin (\omega _{d3} t_1 )),\nonumber \\ d_7= & {} (-A_3 +m_2 \psi _{21} A_1 +m_2 \psi _{22} A_2 +n_2 A_3 )\omega ,\nonumber \\ f_7= & {} (B_3 -m_2 \psi _{21} B_1 -m_2 \psi _{22} B_2 -n_2 B_3 )\omega , \end{aligned}$$
(71)

where

$$\begin{aligned} e_i =e^{-\eta _i t_1 }, \quad t_1 =\frac{n\pi }{\omega }. \end{aligned}$$
(72)

Appendix 2: The integration constants \(a_{ij} \) and \(b_{ij} \) determined by the initial conditions after impacting

Let the initial conditions be \(x_{10} \), \(\dot{x}_{10} \), \(x_{20} \), \(\dot{x}_{20} \), \(\dot{x}_{30} \), \(\tau _0 \), the integration constants \(a_{i1} \) and \(b_{i1} \) after impacting at the right stop can be expressed as

$$\begin{aligned} \left. {{\begin{array}{rcl} a_{11} &{}=&{}U_{a1} \sin \tau _0 +V_{a1} \cos \tau _0 +P_{a1} x_{10} +Q_{a1} x_{20} , \\ a_{21} &{}=&{}U_{a2} \sin \tau _0 +V_{a2} \cos \tau _0 +P_{a2} x_{10} +Q_{a2} x_{20} , \\ a_{31} &{}=&{}U_{a3} \sin \tau _0 +V_{a3} \cos \tau _0 +P_{a3} x_{10} +Q_{a3} x_{20} -h, \\ b_{11} &{}=&{}U_{b1} \sin \tau _0 +V_{b1} \cos \tau _0 +P_{b1} x_{10} +Q_{b1} x_{20} +M_{b1} \dot{x}_{10} +N_{b1} \dot{x}_{20} , \\ b_{21} &{}=&{}U_{b2} \sin \tau _0 +V_{b2} \cos \tau _0 +P_{b2} x_{10} +Q_{b2} x_{20} +M_{b2} \dot{x}_{10} +N_{b2} \dot{x}_{20} , \\ b_{31} &{}=&{}U_{b3} \sin \tau _0 +V_{b3} \cos \tau _0 +P_{b3} x_{10} +Q_{b3} x_{20} +M_{b3} \dot{x}_{30} -\frac{\eta _3 h}{\omega _{d3} }, \\ \end{array} }} \right\} \end{aligned}$$
(73)

and the integration constants \(a_{i2} \) and \(b_{i2} \) after impacting at the left stop can be expressed as

$$\begin{aligned} \left. {{\begin{array}{rcl} a_{12} &{}=&{}U_{a1} \sin \tau _0^{\prime } +V_{a1} \cos \tau _0^{\prime } +P_{a1} x_{10}^{\prime } +Q_{a1} x_{20}^{\prime } , \\ a_{22} &{}=&{}U_{a2} \sin \tau _0^{\prime } +V_{a2} \cos \tau _0^{\prime } +P_{a2} x_{10}^{\prime } +Q_{a2} x_{20}^{\prime } , \\ a_{32} &{}=&{}U_{a3} \sin \tau _0^{\prime } +V_{a3} \cos \tau _0^{\prime } +P_{a3} x_{10}^{\prime } +Q_{a3} x_{20}^{\prime } +h, \\ b_{12} &{}=&{}U_{b1} \sin \tau _0^{\prime } +V_{b1} \cos \tau _0^{\prime } +P_{b1} x_{10}^{\prime } +Q_{b1} x_{20}^{\prime } +M_{b1} \dot{x}_{10}^{\prime } +N_{b1} \dot{x}_{20}^{\prime } , \\ b_{22} &{}=&{}U_{b2} \sin \tau _0^{\prime } +V_{b2} \cos \tau _0^{\prime } +P_{b2} x_{10}^{\prime } +Q_{b2} x_{20}^{\prime } +M_{b2} \dot{x}_{10}^{\prime } +N_{b2} \dot{x}_{20}^{\prime } , \\ b_{32} &{}=&{}U_{b3} \sin \tau _0^{\prime } +V_{b3} \cos \tau _0^{\prime } +P_{b3} x_{10}^{\prime } +Q_{b3} x_{20}^{\prime } +M_{b3} \dot{x}_{30}^{\prime } +\frac{\eta _3 h}{\omega _{d3} }, \\ \end{array} }} \right\} \end{aligned}$$
(74)

where

$$\begin{aligned}&(x_{10}^{\prime } ,{\dot{x}}'_{10} ,{x}'_{20} ,{\dot{x}}'_{20} ,\dot{x}_{30}^{\prime } ,{\tau }'_0 )= (-x_{10} ,-\dot{x}_{10} ,-x_{20} ,\nonumber \\&\quad -\dot{x}_{20} ,-\dot{x}_{30} ,\tau _0 +n\pi ),\end{aligned}$$
(75)
$$\begin{aligned}&U_{a1} =\frac{u_{sa1} }{\left| {D_a } \right| }, \quad V_{a1} =\frac{v_{ca1} }{\left| {D_a } \right| }, \quad P_{a1} =\frac{\psi _{22} }{\left| {D_a } \right| }, \nonumber \\&Q_{a1} =-\frac{\psi _{12} }{\left| {D_a } \right| },\end{aligned}$$
(76)
$$\begin{aligned}&U_{a2} =\frac{u_{sa2} }{\left| {D_a } \right| }, \quad V_{a2} =\frac{v_{ca2} }{\left| {D_a } \right| }, \quad P_{a2} =-\frac{\psi _{21} }{\left| {D_a } \right| }, \nonumber \\&Q_{a2} =\frac{\psi _{11} }{\left| {D_a } \right| },\end{aligned}$$
(77)
$$\begin{aligned}&U_{a3} =\psi _{21} U_{a1} +\psi _{21} A_1 +\psi _{22} A_2 -A_3 , \nonumber \\&V_{a3} =\psi _{21} V_{a1} +\psi _{21} B_1 +\psi _{22} B_2 -B_3,\nonumber \\&P_{a3} =\psi _{21} P_{a1} +\psi _{22} P_{a2} , \nonumber \\&Q_{a3} =\psi _{21} Q_{a1} +\psi _{22} Q_{a2} , \end{aligned}$$
(78)
$$\begin{aligned}&U_{b1} =\frac{u_{sb1} }{\left| {D_b } \right| }, \quad V_{b1} =\frac{v_{cb1} }{\left| {D_b } \right| }, \quad P_{b1} =\frac{p_{xb1} }{\left| {D_b } \right| }, \nonumber \\&Q_{b1} =-\frac{q_{xb1} }{\left| {D_b } \right| }, \quad M_{b1} =\frac{m_{xb1} }{\left| {D_b } \right| },\nonumber \\&N_{b1} =\frac{n_{xb1} }{\left| {D_b } \right| },\end{aligned}$$
(79)
$$\begin{aligned}&U_{b2} =\frac{u_{sb2} }{\left| {D_b } \right| }, \quad V_{b2} =\frac{v_{cb2} }{\left| {D_b } \right| }, \quad P_{b2} =\frac{p_{xb2} }{\left| {D_b } \right| }, \nonumber \\&Q_{b2} =-\frac{q_{xb2} }{\left| {D_b } \right| }, \quad M_{b2} =\frac{m_{xb2} }{\left| {D_b } \right| }, \quad N_{b2} =\frac{n_{xb2} }{\left| {D_b } \right| },\nonumber \\\end{aligned}$$
(80)
$$\begin{aligned}&U_{b3} =\frac{\eta _3 U_{a3} +B_3 \omega }{\omega _{d3} }, \quad V_{b3} =\frac{\eta _3 V_{a3} -A_3 \omega }{\omega _{d3} }, \nonumber \\&P_{b3} =\frac{\eta _3 P_{a3} }{\omega _{d3} }, Q_{b3}=\frac{\eta _3Q_{a3}}{\omega _{d3}} , \quad M_{b3} =\frac{1}{\omega _{d3} }, \end{aligned}$$
(81)

where

$$\begin{aligned} D_a= & {} \psi , \quad D_b =\left[ {{ \begin{array}{cc} {\psi _{11} \omega _{d1} }&{} {\psi _{12} \omega _{d2} } \\ {\psi _{21} \omega _{d1} }&{} {\psi _{22} \omega _{d2} } \\ \end{array} }} \right] , \end{aligned}$$
(82)
$$\begin{aligned} u_{sa1}= & {} \psi _{12} (\psi _{21} A_1 +\psi _{22} A_2 )\nonumber \\&-\psi _{22}(\psi _{11} A_1 +\psi _{12} A_2 ),\nonumber \\ v_{ca1}= & {} \psi _{12} (\psi _{21} B_1 +\psi _{22} B_2 )\nonumber \\&-\psi _{22}(\psi _{11} B_1 +\psi _{12} B_2 ),\end{aligned}$$
(83)
$$\begin{aligned} u_{sa2}= & {} \psi _{22} (\psi _{11} A_1 +\psi _{12} A_2 )\nonumber \\&-\psi _{11} (\psi _{21} A_1 +\psi _{22} A_2 ),\nonumber \\ v_{ca2}= & {} \psi _{21} (\psi _{11} B_1 +\psi _{12} B_2 )\nonumber \\&-\psi _{11} (\psi _{21} B_1 +\psi _{22} B_2 ),\end{aligned}$$
(84)
$$\begin{aligned} u_{sb1}= & {} \psi _{22} \omega _{d2} u_{s1} -\psi _{12} \omega _{d2} u_{s2} ,\nonumber \\ v_{cb1}= & {} \psi _{22} \omega _{d2} v_{s1} -\psi _{12} \omega _{d2} v_{s2} ,\nonumber \\ p_{xb1}= & {} \psi _{22} \omega _{d2} p_{s1} -\psi _{12} \omega _{d2} p_{s2} ,\nonumber \\ q_{xb1}= & {} \psi _{22} \omega _{d2} q_{s1} -\psi _{12} \omega _{d2} q_{s2} ,\nonumber \\ m_{xb1}= & {} \psi _{22} \omega _{d2} , n_{xb1} =-\psi _{12} \omega _{d2},\end{aligned}$$
(85)
$$\begin{aligned} u_{sb2}= & {} \psi _{11} \omega _{d1} u_{s2} -\psi _{21} \omega _{d1} u_{s1} ,\nonumber \\ v_{cb2}= & {} \psi _{11} \omega _{d1} v_{s2} -\psi _{21} \omega _{d1} v_{s1} ,\nonumber \\ p_{xb2}= & {} \psi _{11} \omega _{d1} p_{s2} -\psi _{21} \omega _{d1} p_{s1} ,\nonumber \\ q_{xb2}= & {} \psi _{11} \omega _{d1} q_{s2} -\psi _{21} \omega _{d1} q_{s1} ,\nonumber \\ m_{xb2}= & {} -\psi _{21} \omega _{d1} , n_{xb2} =\psi _{11} \omega _{d1} , \end{aligned}$$
(86)

where

$$\begin{aligned} u_{s1}= & {} \psi _{11} \eta _1 U_{a1} +\psi _{12} \eta _2 U_{a2} +\psi _{11} B_1 \omega +\psi _{12} B_2 \omega ,\nonumber \\ v_{s1}= & {} \psi _{11} \eta _1 V_{a1} +\psi _{12} \eta _2 V_{a2} -\psi _{11} A_1 \omega -\psi _{12} A_2 \omega ,\nonumber \\ p_{s1}= & {} \psi _{11} \eta _1 P_{a1} +\psi _{12} \eta _2 P_{a2} , \quad q_{s1} =\psi _{11} \eta _1 q_{a1} \nonumber \\&+\psi _{12} \eta _2 q_{a2} , \end{aligned}$$
(87)
$$\begin{aligned} u_{s2}= & {} \psi _{21} \eta _1 U_{a1} +\psi _{22} \eta _2 U_{a2} +\psi _{21} B_1 \omega +\psi _{22} B_2 \omega ,\nonumber \\ v_{s2}= & {} \psi _{21} \eta _1 V_{a1} +\psi _{22} \eta _2 V_{a2} -\psi _{21} A_1 \omega -\psi _{22} A_2 \omega ,\nonumber \\ p_{s2}= & {} \psi _{21} \eta _1 P_{a1} +\psi _{22} \eta _2 P_{a2} , \nonumber \\ q_{s2}= & {} \psi _{21} \eta _1 q_{a1} +\psi _{22} \eta _2 q_{a2} . \end{aligned}$$
(88)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y. Bifurcations of the symmetric quasi-periodic motion and Lyapunov dimension of a vibro-impact system. Nonlinear Dyn 84, 1697–1713 (2016). https://doi.org/10.1007/s11071-016-2598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2598-3

Keywords

Navigation