Skip to main content
Log in

Nonlinear harmonic vibration and stability analysis of a cantilever beam carrying an intermediate lumped mass

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear forced vibration of a cantilever beam with an intermediate lumped mass is studied, and the nonlinear governing equation of the vibrating beam using Euler–Lagrange method is derived. Two types of nonlinearities, including the inertial term and the elastic part, are included in the nonlinear differential equation of motion. The multiple scales method is adopted as the solution procedure for this problem and the conditions of the primary and secondary resonances of the system are investigated. The frequency response diagrams of the cantilever beam for the fundamental harmonic vibration, super-harmonic condition \(({\omega }\approx \frac{1}{2}{\omega }_0,\,{\omega }\approx \frac{1}{3}{\omega }_0\hbox { and }{\omega }\approx \frac{1}{5}{\omega }_0 )\) and also sub-harmonic condition \(({\omega }\approx 2\omega _0,\,{\omega }\approx 3\omega _0\hbox { and }{\omega }\approx 5\omega _0 )\) are obtained. The stable and unstable segments of each frequency-response curves are then numerically determined. It is shown that the frequency response of the cantilever beam is strongly affected by damping and excitation level. Particularly, for the sub-harmonic resonance of the system, instability can be observed by increasing the amplitude of excitation. As for a detailed parameter sensitivity study, the influences of different parameters on the frequency response of the cantilever beam have been examined. By varying the values of the parameters of the model, it is found that transition from the periodic solution to chaos occurred for the mechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kar, R.C., Dwivedy, S.K.: Non-linear dynamics of a slender beam carrying a lumped mass with principal parametric and internal resonances. Int. J. Nonlinear Mech. 34(3), 515–529 (1999)

    Article  MATH  Google Scholar 

  2. Dwivedy, S.K., Kar, R.C.: Nonlinear dynamics of a cantilever beam carrying an attached mass with 1:3:9 internal resonances. Nonlinear Dyn. 31(1), 49–72 (2003)

    Article  MATH  Google Scholar 

  3. Pratiher, B., Bhowmick, S.: Nonlinear dynamic analysis of a Cartesian manipulator carrying an end effector placed at an intermediate position. Nonlinear Dyn. 69(1–2), 539–553 (2012)

    Article  MathSciNet  Google Scholar 

  4. Hamdan, M.N., Shabaneh, N.H.: On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J. Sound Vib. 199(5), 711–736 (1997)

    Article  Google Scholar 

  5. Hamdan, M.N., Dado, M.H.F.: Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J. Sound Vib. 206(2), 151–168 (1997)

    Article  Google Scholar 

  6. Al-Qaisia, A.A., Hamdan, M.N.: Bifurcations of approximate harmonic balance solutions and transition to chaos in an oscillator with inertial and elastic symmetric nonlinearities. J. Sound Vib. 244(3), 453–479 (2001)

    Article  Google Scholar 

  7. Al-Qaisia, A.A., Hamdan, M.N.: Bifurcations and chaos of an immersed cantilever beam in a fluid and carrying an intermediate mass. J. Sound Vib. 253(4), 859–888 (2002)

    Article  Google Scholar 

  8. Feng, Z.H., Zhu, X.D., Lan, X.J.: Stochastic jump and bifurcation of a slender cantilever beam carrying a lumped mass under narrow-band principal parametric excitation. Int. J. Nonlinear Mech. 46(10), 1330–1340 (2011)

    Article  Google Scholar 

  9. Park, S., Chung, W.K., Youm, Y., Lee, J.W.: Natural frequencies and open-loop responses of an elastic beam fixed on a moving cart and carrying an intermediate lumped mass. J. Sound Vib. 230(3), 591–615 (2000)

    Article  Google Scholar 

  10. Lim, C.W., Xu, R., Lai, S.K., Yu, Y.M., Yang, Q.: Nonlinear free vibration of an elastically-restrained beam with a point mass via the Newton-Harmonic balancing approach. Int. J. Nonlinear Sci. Numer. Simul. 10(5), 661–674 (2009)

    Article  Google Scholar 

  11. Lai, S.K., Lim, C.W., Wu, B.S., Wang, C., Zeng, Q.C., He, X.F.: Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quantic Duffing oscillators. J. Appl. Math. Model. 33(2), 852–866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency-amplitude formulation and He’s energy balance method. J. Comput. Math. Appl. 59(9), 3222–3228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M.: Analytical approximate solutions for the generalized nonlinear oscillator. J. Appl. Anal. 91(5), 965–977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M.: Free vibration analysis of strongly nonlinear generalized Duffing oscillators using He’s variational approach & homotopy perturbation method. Nonlinear Sci. Lett. A 2(1), 11–16 (2011)

    MATH  Google Scholar 

  15. Younesian, D., Askari, H., Saadatnia, Z., Yildirim, A.: Periodic solutions for the generalized nonlinear oscillators containing fraction order elastic force. Int. J. Nonlinear Sci. Numer. Simul. 11(12), 1027–1032 (2010)

    Article  Google Scholar 

  16. Younesian, D., Saadatnia, Z., Askari, H.: Analytical solutions for free oscillations of beams on nonlinear elastic foundations using the variational iteration method. J. Theor. Appl. Mech. 50(2), 639–652 (2012)

    MathSciNet  Google Scholar 

  17. Qian, Y.H., Lai, S.K., Zhang, W., Xiang, Y.: Study on asymptotic analytical solutions using HAM for strongly nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass. J. Numer. Algorithms 58(3), 293–314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Herisanu, N., Marinca, V.: Explicit analytical approximation to large-amplitude non-linear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica J. 45(6), 847–855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazidi, A., Fazelzadeh, S.A.: Flutter of a swept aircraft wing with a powered engine. J. Aerosp. Eng. 23(4), 243–250 (2009)

    Article  Google Scholar 

  20. Fazelzadeh, S.A., Kazemi-Lari, M.A.: Stability analysis of partially loaded Leipholz column carrying a lumped mass and resting on elastic foundation. J. Sound Vib. 332(3), 595–607 (2013)

    Article  Google Scholar 

  21. Fazelzadeh, S.A., Mazidi, A.: Nonlinear aeroelastic analysis of bending-torsion wings subjected to a transverse follower force. J. Comput. Nonlinear Dyn. 6(3), 031016 (2011)

    Article  Google Scholar 

  22. Fazelzadeh, S.A., Mazidi, A., Kalantari, H.: Bending-torsional flutter of wings with an attached mass subjected to a follower force. J. Sound Vib. 323(1), 148–162 (2009)

    Article  Google Scholar 

  23. Kazemi-Lari, M.A., Fazelzadeh, S.A.: Flexural-torsional flutter analysis of a deep cantilever beam subjected to a partially distributed lateral force. Acta Mech. 226(5), 1379–1393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gürgöze, M.: On the eigen-frequencies of a cantilever beam with attached tip mass and a spring-mass system. J. Sound Vib. 190(2), 149–162 (1996)

    Article  Google Scholar 

  25. Fung, E.H.K., Shi, Z.X.: Vibration frequencies of a constrained flexible arm carrying an end mass. J. Sound Vib. 204(2), 259–269 (1997)

    Article  Google Scholar 

  26. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (1979)

    MATH  Google Scholar 

  27. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, London (2004)

    Book  MATH  Google Scholar 

  28. Younesian, D., Sadri, M., Esmailzadeh, E.: Primary and secondary resonance analyses of clamped–clamped micro-beams. Nonlinear Dyn. 76(4), 1867–1884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Esmailzadeh.

Appendix

Appendix

\(H\left( {A,{{\varLambda }},{\varOmega },T_0 } \right) \) in Eq. (26) is defined as:

$$\begin{aligned}&H\left( {A,{{\varLambda }},{\varOmega },T_{0} } \right) = \left( - 6A{\varLambda }^{2} \alpha _{1} - 3A^{2} \bar{A}\alpha _{1} - 30A{\varLambda }^{4} \alpha _{2} \right. \\&\quad -\,60A^{2} {\varLambda }^{2} \bar{A}\alpha _{2} - 10A^{3} \bar{A}^{2} \alpha _{2}\\&\quad +\, 2A{\varLambda }^{2} {\varOmega }^{2} \beta _{1} + 18A{\varLambda }^{4} {\varOmega }^{2} \beta _{2} + 18A^{2} {\varLambda }^{2} {\varOmega }^{2} \bar{A}\beta _{2} \\&\quad -\,{i}A\mu + 2A{\varLambda }^{2} \beta _{1} + 2A^{2} \bar{A}\beta _{1}\\&\quad +\left. \, 6A{\varLambda }^{4} \beta _{2} + 30A^{2} {\varLambda }^{2} \bar{A}\beta _{2} + 8A^{3} \bar{A}^{2} \beta _{2} - 2{i}A^{\prime }\right) {e}^{{{{i}}T_{0} }} ~ \\&\quad +\, \left( - {{i}}{\varLambda }\mu {\varOmega }- 3{\varLambda }^{3} \alpha _{1}\right. \\&\quad -\, 6A{\varLambda }\bar{A}\alpha _{1} - 10{\varLambda }^{5} \alpha _{2} - 60A{\varLambda }^{3} \bar{A}\alpha _{2} \\&\quad -\, 30A^{2} {\varLambda }\bar{A}^{2} \alpha _{2} + 2{\varLambda }^{3} {\varOmega }^{2} \beta _{1}\\&\quad +\, 2A{\varLambda }{\varOmega }^{2} \bar{A}\beta _{1} + 8{\varLambda }^{5} {\varOmega }^{2} \beta _{2} + 30A{\varLambda }^{3} {\varOmega }^{2} \bar{A}\beta _{2} \\&\quad +\, 6A^{2} {\varLambda }{\varOmega }^{2} \bar{A}^{2} \beta _{2} + 2A{\varLambda }\bar{A}\beta _{1}\\&\quad \left. +\,18A{\varLambda }^{3} \bar{A}\beta _{2} + 18A^{2} {\varLambda }\bar{A}^{2} \beta _{2} \right) {{e}}^{{{{i}}{\varOmega }T_{0} }} \\&\quad +\, \left( { - A^{3} \alpha _{1} - 20A^{3} {\varLambda }^{2} \alpha _{2} - 5A^{4} \bar{A}\alpha _{2} } \right. \\&\quad +\, 6A^{3} {\varLambda }^{2} {\varOmega }^{2} \beta _{2} + 2A^{3} \beta _{1} + 18A^{3} {\varLambda }^{2} \beta _{2} \\&\quad \left. +\, 6A^{4} \bar{A}\beta _{2} \right) {{e}}^{{3{{i}}T_{0} }} + \left( - A^{5} \alpha _{2}\right. \\&\quad \left. +\, 2A^{5} \beta _{2} \right) {{e}}^{{5{{i}}T_{0} }} + \left( - {\varLambda }^{3} \alpha _{1} - 5{\varLambda }^{5} \alpha _{2} \right. \\&\quad \left. -\, 20A{\varLambda }^{3} \bar{A}\alpha _{2} + 2{\varLambda }^{3} {\varOmega }^{2} \beta _{1} + 6{\varLambda }^{5} {\varOmega }^{2} \beta _{2} \right. \\ \end{aligned}$$
$$\begin{aligned}&\quad \left. { +\, 18A{\varLambda }^{3} {\varOmega }^{2} \bar{A}\beta _{2} + 6A{\varLambda }^{3} \bar{A}\beta _{2} } \right) {{e}}^{{3{{i}}{\varOmega }T_{0} }} \\&\quad +\, \left( { - {\varLambda }^{5} \alpha _{2} + 2{\varLambda }^{5} {\varOmega }^{2} \beta _{2} } \right) {{e}}^{{5{{i}}{\varOmega }T_{0} }}\\&\quad +\, \left( - 3{\varLambda }\bar{A}^{2} \alpha _{1} - 30{\varLambda }^{3} \bar{A}^{2} \alpha _{2} - 20A{\varLambda }\bar{A}^{3} \alpha _{2} \right. \\&\quad +\, {\varLambda }{\varOmega }^{2} \bar{A}^{2} \beta _{1} + 15{\varLambda }^{3} {\varOmega }^{2} \bar{A}^{2} \beta _{2}\\&\quad +\, 4A{\varLambda }{\varOmega }^{2} \bar{A}^{3} \beta _{2} - 2{\varLambda }{\varOmega }\bar{A}^{2} \beta _{1} - 6{\varLambda }^{3} {\varOmega }\bar{A}^{2} \beta _{2} \\&\quad -\, 4A{\varLambda }{\varOmega }\bar{A}^{3} \beta _{2} + 3{\varLambda }\bar{A}^{2} \beta _{1}\\&\quad \left. +\, 15{\varLambda }^{3} \bar{A}^{2} \beta _{2} + 16A{\varLambda }\bar{A}^{3} \beta _{2} \right) e^{{{{i}}\left( {{\varOmega }- 2} \right) T_{0} }}\\&\quad +\, \left( - 3A^{2} {\varLambda }\alpha _{1} - 30A^{2} {\varLambda }^{3} \alpha _{2} - 20A^{3} {\varLambda }\bar{A}\alpha _{2} \right. \\&\quad \left. +\, A^{2} {\varLambda }{\varOmega }^{2} \beta _{1} + 15A \right. ^{2} {\varLambda }^{3} {\varOmega }^{2} \beta _{2}\\&\quad +\, 4A^{3} {\varLambda }{\varOmega }^{2} \bar{A}\beta _{2} + 2A^{2} {\varLambda }{\varOmega }\beta _{1} + 6A^{2} {\varLambda }^{3} {\varOmega }\beta _{2} \\&\quad +\, 4A^{3} {\varLambda }{\varOmega }\bar{A}\beta _{2} + 3A^{2} {\varLambda }\beta _{1}\\&\quad \left. { +\, 15A^{2} {\varLambda }^{3} \beta _{2} + 16A^{3} {\varLambda }\bar{A}\beta _{2} } \right) {{e}}^{{{{i}}\left( {{\varOmega }+ 2} \right) T_{0} }}\\&\quad +\, \left( - 5{\varLambda }\bar{A}^{4} \alpha _{2} + {\varLambda }{\varOmega }^{2} \bar{A}^{4} \beta _{2} \right. \\&\quad \left. -\, 2{\varLambda }{\varOmega }\bar{A}^{4} \beta _{2} + 7{\varLambda }\bar{A}^{4} \beta _{2} \right) e^{{{{i}}\left( {{\varOmega }- 4} \right) T_{0} }} + \left( - 5A^{4} {\varLambda }\alpha _{2}\right. \\&\quad +\, A^{4} {\varLambda }{\varOmega }^{2} \beta _{2} + 2A^{4} {\varLambda }{\varOmega }\beta _{2}\\&\quad \left. +\, 7A^{4} {\varLambda }\beta _{2} \right) {{e}}^{{{{i}}\left( {{\varOmega }+ 4} \right) T_{0} }} + \left( - 3{\varLambda }^{2} \bar{A}\alpha _{1} - 20{\varLambda }^{4} \bar{A}\alpha _{2} \right. \\&\quad -\, 30A{\varLambda }^{2} \bar{A}^{2} \alpha _{2} + 3{\varLambda }^{2} {\varOmega }^{2} \bar{A}\beta _{1}\\ \end{aligned}$$
$$\begin{aligned}&\quad +\, 16{\varLambda }^{4} {\varOmega }^{2} \bar{A}\beta _{2} + 15A{\varLambda }^{2} {\varOmega }^{2} \bar{A}^{2} \beta _{2} - 2{\varLambda }^{2} {\varOmega }\bar{A}\beta _{1} \nonumber \\&\quad -\, 4{\varLambda }^{4} {\varOmega }\bar{A}\beta _{2} - 6A{\varLambda }^{2} {\varOmega }\bar{A}^{2} \beta _{2}\nonumber \\&\quad \left. +\, {\varLambda }^{2} \bar{A}\beta _{1} + 4{\varLambda }^{4} \bar{A}\beta _{2} + 15A{\varLambda }^{2} \bar{A}^{2} \beta _{2} \right) e^{{{{i}}\left( {2{\varOmega }- 1} \right) T_{0} }} \nonumber \\&\quad +\, \left( - 3A{\varLambda }^{2} \alpha _{1} - 20A{\varLambda }^{4} \alpha _{2}\right. \nonumber \\&\quad -\, 30A^{2} {\varLambda }^{2} \bar{A}\alpha _{2} + 3A{\varLambda }^{2} {\varOmega }^{2} \beta _{1} + 16A{\varLambda }^{4} {\varOmega }^{2} \beta _{2} \nonumber \\&\quad +\, 15A^{2} {\varLambda }^{2} {\varOmega }^{2} \bar{A}\beta _{2} + 2A{\varLambda }^{2} {\varOmega }\beta _{1}\nonumber \\&\quad +\, 4A{\varLambda }^{4} {\varOmega }\beta _{2} + 6A^{2} {\varLambda }^{2} {\varOmega }\bar{A}\beta _{2} + A{\varLambda }^{2} \beta _{1} + 4A{\varLambda }^{4} \beta _{2}\nonumber \\&\quad \left. +\, 15A^{2} {\varLambda }^{2} \bar{A}\beta _{2} \right) {{e}}^{{{{i}}\left( {2{\varOmega }+ 1} \right) T_{0} }} \nonumber \\&\quad +\, \left( { - 10{\varLambda }^{2} \bar{A}^{3} \alpha _{2} + 5{\varLambda }^{2} {\varOmega }^{2} \bar{A}^{3} \beta _{2} - 6{\varLambda }^{2} {\varOmega }\bar{A}^{3} } \right. \beta _{2}\nonumber \\&\quad +\, \left. {9{\varLambda }^{2} \bar{A}^{3} \beta _{2} } \right) {{e}}^{{{{i}}\left( {2{\varOmega }- 3} \right) T_{0} }}\nonumber \\&\quad +\, \left( - 10A^{3} {\varLambda }^{2} \alpha _{2} + 5A^{3} {\varLambda }^{2} {\varOmega }^{2} \beta _{2} + 6A^{3} {\varLambda }^{2} {\varOmega }\beta _{2} \right. \nonumber \\&\quad \left. +\, 9A^{3} {\varLambda }^{2} \beta _{2} \right) {{e}}^{{{{i}}\left( {2{\varOmega }+ 3} \right) T_{0} }}\nonumber \\&\quad +\, \left( - 10{\varLambda }^{3} \bar{A}^{2} \alpha _{2} + 9{\varLambda }^{3} {\varOmega }^{2} \bar{A}^{2} \beta _{2} - 6{\varLambda }^{3} {\varOmega }\bar{A}^{2} \beta _{2}\right. \nonumber \\&\quad \left. +\, 5{\varLambda }^{3} \bar{A}^{2} \beta _{2}\right) {{e}}^{{{{i}}\left( {3{\varOmega }- 2} \right) T_{0} }} \nonumber \\&\quad +\, \left( { - 10A^{2} {\varLambda }^{3} \alpha _{2} + 9A^{2} {\varLambda }^{3} {\varOmega }^{2} \beta _{2} + 6A^{2} {\varLambda }^{3} {\varOmega }\beta _{2} } \right. \nonumber \\&\quad +\, \left. {5A^{2} {\varLambda }^{3} \beta _{2} } \right) {{e}}^{{{{i}}\left( {3{\varOmega }+ 2} \right) T_{0} }} \nonumber \\&\quad +\, \left( { - 5{\varLambda }^{4} \bar{A}\alpha _{2} + 7{\varLambda }^{4} {\varOmega }^{2} \bar{A}\beta _{2} - 2} \right. {\varLambda }^{4} {\varOmega }\bar{A}\beta _{2}\nonumber \\&\quad \left. +\, {\varLambda }^{4} \bar{A}\beta _{2} \right) {{e}}^{{{{i}}\left( {4{\varOmega }- 1} \right) T_{0} }} \nonumber \\&\quad +\, \left( - 5A{\varLambda }^{4} \alpha _{2} + 7A{\varLambda }^{4} {\varOmega }^{2} \beta _{2} + 2A{\varLambda }^{4} {\varOmega }\beta _{2}\right. \nonumber \\&\quad \left. +\, A{\varLambda }^{4} \beta _{2} \right) {{e}}^{{{{i}}\left( {4{\varOmega }+ 1} \right) T_{0} }} + \mathrm{c.c} \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadri, M., Younesian, D. & Esmailzadeh, E. Nonlinear harmonic vibration and stability analysis of a cantilever beam carrying an intermediate lumped mass. Nonlinear Dyn 84, 1667–1682 (2016). https://doi.org/10.1007/s11071-016-2596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2596-5

Keywords

Navigation