Skip to main content
Log in

A Farey staircase from the two-extremum return map of a Josephson junction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We report the presence of a Farey staircase in the simulated current–voltage characteristics between the second and third harmonic steps of an underdamped Josephson junction under external electromagnetic radiation. The steps constituting the staircase are interrupted by chaotic intervals. The dynamics is due to a two-extremum return map and is not associated with phase locking on an invariant torus. On decreasing the current, the third harmonic step ends in the bifurcation known as blue-sky catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Metropolis, N., Stein, M.L., Stein, P.R.: On finite limit sets for transformations on the unit interval. J. Comb. Theor. Ser. A 15, 25–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Erratum: fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 34, 1601 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Reichhardt, C., Nori, F.: Phase locking, devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning. Phys. Rev. Lett. 82, 414–417 (1999)

    Article  Google Scholar 

  5. Odavić, J., Mali, P., Tekić, J.: Farey sequence in the appearance of subharmonic Shapiro steps. Phys. Rev. E 91, 052904 (2015)

    Article  Google Scholar 

  6. Baums, D., Elsässer, W., Göbel, E.O.: Farey tree and devil’s staircase of a modulated external-cavity semiconductor laser. Phys. Rev. Lett. 63, 155–158 (1989)

    Article  Google Scholar 

  7. Houart, G., Dupont, G., Goldbeter, A.: Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate signal in a model for intracellular Ca\(^{2+}\) oscillations. Bull. Math. Biol. 61, 507–530 (1999)

    Article  MATH  Google Scholar 

  8. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons Fractals 18, 759–773 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Perc, M., Marhl, M.: Resonance effects determine the frequency of bursting Ca\(^{2+}\) oscillations. Chem. Phys. Lett. 376, 432–437 (2003)

    Article  MATH  Google Scholar 

  10. Perc, M., Marhl, M.: Synchronization of regular and chaotic oscillations: the role of local divergence and the slow passage effect. Int. J. Bifurc. Chaos 14, 2735–2751 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Belykh, I., Shilnikov, A.L.: When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. Phys. Rev. Lett. 101, 078102 (2008)

    Article  Google Scholar 

  12. Wang, Q., Chen, G., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One 6, 15851 (2011)

    Article  Google Scholar 

  13. Yamapi, R., Kadji, H.E., Filatrella, G.: Stability of the synchronization manifold in nearest neighbor nonidentical van der Pol-like oscillators. Nonlinear Dyn. 61, 275–294 (2010)

    Article  MATH  Google Scholar 

  14. Wang, Q., Perc, M., Duan, Z., Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80, 026206 (2009)

    Article  Google Scholar 

  15. Shilnikov, A.L.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Glazier, J.A., Libchaber, A.: Quasi-periodicity and dynamical systems: an experimentalist’s view. IEEE Trans. Circuits Syst. 35, 790–809 (1988)

    Article  MathSciNet  Google Scholar 

  17. Jensen, M.H., Bak, P., Bohr, T.: Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps. Phys. Rev. A 30, 1960–1969 (1984)

    Article  MathSciNet  Google Scholar 

  18. Yu, W., Stroud, D.: Resistance steps in underdamped Josephson-junction arrays. Phys. Rev. B 46, 14005 (1992)

    Article  Google Scholar 

  19. Ben-Jacob, E., Braiman, Y., Shainsky, R.: Microwave-induced “devil’s staircase” structure and “chaotic” behavior in current-fed Josephson junctions. Appl. Phys. Lett. 38, 822–824 (1981)

    Article  Google Scholar 

  20. Shukrinov, YuM, Botha, A.E., Medvedeva, SYu., Kolahchi, M.R., Irie, A.: Structured chaos in a devil’s staircase of the Josephson junction. Chaos 24, 033115 (2014)

    Article  MathSciNet  Google Scholar 

  21. Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  22. Stewart, W.C.: Current–voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968)

    Article  Google Scholar 

  23. McCumber, D.E.: Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39, 3113–3118 (1968)

    Article  Google Scholar 

  24. Kautz, R.L., Monaco, R.: Survey of chaos in the rf-biased Josephson junction. J. Appl. Phys. 57, 875–889 (1985)

    Article  Google Scholar 

  25. Noldeke, Ch., Seifert, H.: Different types of intermittent chaos in Josephson junctions. Manifestation in the I–V characteristics. Phys. Lett. A 109, 401–404 (1985)

    Article  Google Scholar 

  26. Li, F., Liu, Q., Guo, H., Zhao, Y., Tang, J., Ma, J.: Simulating the electric activity of FitzHugh–Nagumo neuron by using Josephson junction model. Nonlinear Dyn. 69, 2169–2179 (2012)

    Article  MathSciNet  Google Scholar 

  27. Odyniec, M.: Josephson-junction circuit analysis via integral manifolds. IEEE Trans. Circ. Sys. 30, 308–320 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Odyniec, M., Chua, L.O.: Josephson-junction circuit analysis via integral manifolds: part II. IEEE Trans. Circ. Sys. 32, 34–45 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bohr, T., Bak, P., Jensen, M.H.: Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps. Phys. Rev. A 30, 1970–1981 (1984)

    Article  MathSciNet  Google Scholar 

  30. Yu, W., Stroud, D.: Resistance steps in underdamped Josephson-junction arrays. Phys. Rev. B 46, 14005 (1992)

    Article  Google Scholar 

  31. Alstrøm, P., Levinsen, M.T.: Josephson junction at the onset of chaos: a complete devil’s staircase. Phys. Rev. B 31, 2753–2758 (1985)

    Article  Google Scholar 

  32. Lee, S.-J., Halsey, T.C.: Staircase dynamics of Josephson-junction arrays. Phys. Rev. B 47, 5133–5140 (1993)

    Article  Google Scholar 

  33. Valkering, T., Hooijer, C., Kroon, M.: Dynamics of two capacitively coupled Josephson junctions in the overdamped limit. Phys. D 135, 137–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ringland, J., Issa, N., Schell, M.: From U sequence to Farey sequence: a unification of one-parameter scenarios. Phys. Rev. A 41, 4223–4235 (1990)

    Article  MathSciNet  Google Scholar 

  35. Losada, M.P.: The geometry of Farey staircases. Int. J. Bifurc. Chaos 14, 4075–4096 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Di Donato, P.F.A., Macau, E.E.N., Grebogi, C.: Phase locking control in the Circle Map. Nonlinear Dyn. 47, 75–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Albahadily, F.N., Ringland, J., Schell, M.: Mixed-mode oscillations in an electrochemical system. I. A Farey sequence which does not occur on a torus. J. Chem. Phys. 90, 813–821 (1989)

    Article  MathSciNet  Google Scholar 

  38. Schell, M., Albahadily, F.N.: Mixed-mode oscillations in an electrochemical system. II. A periodic-chaotic sequence. J. Chem. Phys. 90, 822–828 (1989)

    Article  MathSciNet  Google Scholar 

  39. Palis, J., Pugh, C.: Fifty problems in dynamical systems. In: Manning, A. (ed.) Dynamical Systems. Lecture Notes in Mathematics, vol. 468, pp. 345–353. Springer, Berlin (1975)

    Google Scholar 

  40. Devaney, R.L.: Blue sky catastrophes in reversible Hamiltonian systems. Indiana Univ. Math. J. 26, 247 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Medvedev, V.S.: The bifurcation of the “blue sky catastrophe” on two-dimensional manifolds. Math. Notes 51, 76–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Turaev, D., Shilnikov, L.P.: Blue sky catastrophes. Dokl. Math. 51, 404–407 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Shilnikov, A.L., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101 (2005)

    Article  Google Scholar 

  44. Van Gorder, R.A.: Triple mode alignment in a canonical model of the blue-sky catastrophe. Nonlinear Dyn. 73, 397–403 (2013)

    Article  MathSciNet  Google Scholar 

  45. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V.: Showcase of blue sky catastrophes. Int. J. Bifurc. Chaos 24, 1440003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pedersen, N.F., Samuelsen, M.R., Saermark, K.: Parametric excitation of plasma oscillations in Josephson junctions. J. Appl. Phys. 44, 5120–5125 (1973)

    Article  Google Scholar 

  47. Kautz, R.L.: Noise, chaos, and the Josephson voltage standard. Rep. Prog. Phys. 59, 935–992 (1996)

    Article  Google Scholar 

  48. Gitterman, M.: The Chaotic Pendulum. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  49. Botha, A.E., Shukrinov, YuM, Medvedeva, SYu., Kolahchi, M.R.: Structured chaos in 1-d stacks of intrinsic Josephson junctions irradiated by electromagnetic waves. J. Supercond. Novel Magn. 28, 349–354 (2015)

    Article  Google Scholar 

  50. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (2008)

    MATH  Google Scholar 

  51. Kautz, R.L.: Chaos and thermal noise in the rf-biased Josephson junction. J. Appl. Phys. 58, 424–440 (1985)

    Article  Google Scholar 

  52. Shukrinov, YuM, Medvedeva, SYu., Botha, A.E., Kolahchi, M.R., Irie, A.: Devil’s staircases and continued fractions in Josephson junctions. Phys. Rev. B 88, 214515 (2013)

    Article  Google Scholar 

  53. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction, 2nd edn. Oxford University Press, New York (2000)

    Book  MATH  Google Scholar 

  54. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shilnikov, A.L., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 056214 (2005)

    Article  MathSciNet  Google Scholar 

  56. Abraham, R.H., Stewart, H.B.: A chaotic blue sky catastrophe in forced relaxation oscillations. Phys. D 21, 394–400 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dednam, W., Botha, A.E.: Optimized shooting method for finding periodic orbits of nonlinear dynamical systems. Eng. Comput. 31, 749–762 (2015)

    Article  Google Scholar 

  58. Martin, B.R.: Statistics for Physical Science: An Introduction, 1st edn. Academic Press, Waltham (2012)

    Google Scholar 

  59. Kuznetsov, YuA: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  60. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)

    Article  MathSciNet  Google Scholar 

  61. Choudhury, S., Van Gorder, R.A.: Competitive modes as reliable predictors of chaos versus hyperchaos and as geometric mappings accurately delimiting attractors. Nonlinear Dyn. 69, 2255–2267 (2012)

    Article  MathSciNet  Google Scholar 

  62. Ghigliazza, R.M., Holmes, P.: Minimal models of bursting neurons: How multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM J. Appl. Dyn. Syst. 3, 636–670 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hens, C., Pal, P., Dana, S.K.: Bursting dynamics in a population of oscillatory and excitable Josephson junctions. Phys. Rev. E 92, 022915 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

M. R. K. and Yu. M. S. wish to thank the Physics Department at the University of South Africa (Unisa) for inviting them under the Visiting Researcher program. Yu. M. S. acknowledges the support of the JINR-SA agreement and the Russian Fund for Basic Research, Grant Numbers 12-29-01207 and 15-51-61011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Botha.

Appendix: Scaling law for Farey steps

Appendix: Scaling law for Farey steps

In the limit as I approaches \(I_{\mathrm{BSC}}\), the scaling law \(T\propto \left( I_{\mathrm{BSC}}-I\right) ^{-1/2}\) leads to an expression for the step widths, in the CVC, in terms of the denominator in the p / q ratio. Consider two currents \(I_q\) and \(I_{q+1}\), corresponding to q and \(q+1\). Since \(T = q\tau \), the scaling law implies

$$\begin{aligned} I_{\mathrm{BSC}}-I_q \propto \frac{1}{T_q^2} \propto \frac{1}{q^2} , \end{aligned}$$
(4)

and

$$\begin{aligned} I_{\mathrm{BSC}}-I_{q+1} \propto \frac{1}{T_{q+1}^2} \propto \frac{1}{(q+1)^2} . \end{aligned}$$
(5)

By subtracting Eq. (5) from (4), we find that the step width is given by

$$\begin{aligned} I_{q+1}-I_{q} = l_0\left( \frac{1}{q^2}-\frac{1}{(q+1)^2}\right) , \end{aligned}$$
(6)

where the proportionality constant is found to be \(l_0=0.32159\). It is interesting to note that the derived scaling law is the same as Eq. (4) of Ref. [20]. For comparison, the constant of proportionality for the case discussed in Ref. [20] is \(l_0=2.720\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botha, A.E., Shukrinov, Y.M. & Kolahchi, M.R. A Farey staircase from the two-extremum return map of a Josephson junction. Nonlinear Dyn 84, 1363–1372 (2016). https://doi.org/10.1007/s11071-015-2574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2574-3

Keywords

Mathematics Subject Classification

Navigation