Skip to main content
Log in

Chaos prediction in nonlinear viscoelastic plates subjected to subsonic flow and external load using extended Melnikov’s method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic behavior of the viscoelastic plates subjected to subsonic flow and simultaneous external excitation is studied in this paper. The equation of motion of the plate is derived using the von-Kármán theory. Galerkin’s approach is adopted as the solution method. Corresponding extended Melnikov’s integral is obtained for the non-Hamiltonian system by numerical and analytical approaches. A parametric study is carried out, and effects of different parameters such as linear and nonlinear stiffness and structural damping on the chaotic behavior of the dynamical system are investigated. Chaos thresholds are obtained, and the correlation between the analytical and numerical results is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Guo, C., Paıdoussis, M.: Analysis of hydroelastic instabilities of rectangular parallel-plate assemblies. J. Press. Vessel Technol. 122(4), 502–508 (2000)

    Article  Google Scholar 

  2. Haddadpour, H., Navazi, H., Shadmehri, F.: Nonlinear oscillations of a fluttering functionally graded plate. Compos. Struct. 79(2), 242–250 (2007)

    Article  Google Scholar 

  3. Hao, Y., Chena, L.H., Zhang, W., Leib, J.G.: Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J. Sound Vib. 312(4), 862–892 (2008)

    Article  Google Scholar 

  4. Wu, W., McCue, L.: Application of the extended Melnikov’s method for single-degree-of-freedom vessel roll motion. Ocean Eng. 35(17), 1739–1746 (2008)

  5. Maki, A., Umeda, N., Ueta, T.: Melnikov integral formula for beam sea roll motion utilizing a non-Hamiltonian exact heteroclinic orbit. J. Mar. Sci. Technol. 15(1), 102–106 (2010)

    Article  Google Scholar 

  6. Li, P., Yang, Y., Zhang, M.: Melnikov’s method for chaos of a two-dimensional thin panel in subsonic flow with external excitation. Mech. Res. Commun. 38(7), 524–528 (2011)

    Article  MATH  Google Scholar 

  7. Yuda, H., Zhiqiang, Z.: Bifurcation and chaos of thin circular functionally graded plate in thermal environment. Chaos Solitons Fractals 44(9), 739–750 (2011)

    Article  MATH  Google Scholar 

  8. Li, P., Yang, Y., Xu, W.: Nonlinear dynamics analysis of a two-dimensional thin panel with an external forcing in incompressible subsonic flow. Nonlinear Dyn. 67(4), 2483–2503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, P., Yang, Y., Xu, W., Chen, G.: On the aeroelastic stability and bifurcation structure of subsonic nonlinear thin panels subjected to external excitation. Arch. Appl. Mech. 82(9), 1251–1267 (2012)

    Article  MATH  Google Scholar 

  10. Li, P., Yang, Y., Xu, W., Chen, G.: Stochastic analysis of a nonlinear forced panel in subsonic flow with random pressure fluctuations. J. Appl. Mech. 80(4), 041005 (2013)

    Article  Google Scholar 

  11. Yao, G., Li, F.-M.: Chaotic motion of a composite laminated plate with geometric nonlinearity in subsonic flow. Int. J. Non-Linear Mech. 50, 81–90 (2013)

    Article  Google Scholar 

  12. Li, P., Yang, Y.: On the stability and chaos of a plate with motion constraints subjected to subsonic flow. Int. J. Non-Linear Mech. 59, 28–36 (2014)

    Article  Google Scholar 

  13. Maki, A., Umeda, N., Ueta, T.: Melnikov integral formula for beam sea roll motion utilizing a non-Hamiltonian exact heteroclinic orbit: analytic extension and numerical validation. J. Mar. Sci. Technol. 19(3), 257–264 (2014)

    Article  Google Scholar 

  14. Endo, T., Chua, L.O.: Piecewise-linear analysis of high-damping chaotic phase-locked loops using Melnikov’s method. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(11), 801–807 (1993)

    Article  MATH  Google Scholar 

  15. Belhaq, M.: New analytical technique for predicting homoclinic bifurcations in autonomous dynamical systems. Mech. Res. Commun. 25(1), 49–58 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Belhaq, M., Fiedler, B., Lakrad, F.: Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt-Poincaré method. Nonlinear Dyn. 23(1), 67–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang, H., Li, P., Yang, Y.: Chaos suppression of a subsonic panel with geometric nonlinearity based on Melnikov’s method. Int. J. Dyn. Control 2(3), 395–403 (2014)

  18. Yao, M., Zhang, W.: Using the extended Melnikov method to study multi-pulse chaotic motions of a rectangular thin plate. Int. J. Dyn. Control 2(3), 365–385 (2014)

    Article  Google Scholar 

  19. Younesian, D., Norouzi, H.: Frequency analysis of the nonlinear viscoelastic plates subjected to subsonic flow and external loads. Thin-walled Struct. 92, 65–75 (2015)

    Article  Google Scholar 

  20. Wiggins, S.: Global bifurcations and chaos. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Younesian.

Appendix

Appendix

In order to use the Melnikov’s integral, one should analytically obtain the integrals of \(I_{1}(\Omega )\), \(I_{2}(\Omega )\), \(I_{3}\) and \(I_{4}\). These integrals are represented in the form of Eq. (18). One may show

$$\begin{aligned} \int \limits _{-\infty }^{+\infty } {\frac{e^{b t}}{(1+e^{a t})^{2}}\mathrm{d}t=\frac{(a-b)\pi }{a^{2}\sin \left( {\frac{\pi b}{a}} \right) }} =\frac{(b-a)\pi }{a^{2}\sin \left( {\frac{\pi (b-a)}{a}} \right) }\nonumber \\ \end{aligned}$$
(29)

So, \(I_{1}(\Omega )\) can be represented by

$$\begin{aligned} I_1 (\Omega )= & {} \int \limits _{-\infty }^{+\infty } \sin \Omega t\;e^{\delta t}\dot{x}(t) \mathrm{d}t \nonumber \\= & {} \hbox {Im}\left[ {\int \limits _{-\infty }^{+\infty } {e^{i\Omega t}e^{\delta t}\dot{x}(t) \mathrm{d}t} } \right] \nonumber \\= & {} \hbox {Im}\left[ {\int \limits _{-\infty }^{+\infty } {e^{i\Omega t}e^{\delta t}\left\{ {-\tilde{c}(x_3^s -x_1^s )^{2}\frac{e^{\tilde{c}(x_3^s -x_1^s )t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{2}}} \right\} \mathrm{d}t} } \right] \nonumber \\= & {} -\tilde{c}(x_3^s -x_1^s )^{2}\hbox {Im}\left[ {\int \limits _{-\infty }^{+\infty } {\frac{e^{\left( {i\Omega +\delta +\tilde{c}(x_3^s -x_1^s )} \right) t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{2}}\mathrm{d}t} } \right] \nonumber \\= & {} -\hbox {Im}\left[ {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}\sin \left( {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}(x_3^s -x_1^s )}} \right) }} \right] \end{aligned}$$
(30)

Moreover, one can show

$$\begin{aligned} \frac{ia+b}{ic+d}=\left( {\frac{ac+bd}{c^{2}+d^{2}}} \right) +i\left( {\frac{ad-bc}{c^{2}+d^{2}}} \right) \end{aligned}$$
(31)

According to Eq. (31), if we define \(a=\tilde{c}(x_3^s -x_1^s ), b=i\Omega +\delta +\tilde{c}(x_3^s -x_1^s )\), the Eq. (30) can be represented by

$$\begin{aligned} \hbox {Im}\left[ {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}\sin \left( {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}(x_3^s -x_1^s )}} \right) }} \right] =\frac{1}{\tilde{c}^{2}}\frac{\pi \Omega \sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}-\pi \delta \cos \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}}{\sin ^{2}\frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh ^{2}\frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}+\cos ^{2}\frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh ^{2}\frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}} \end{aligned}$$
(32)

and

$$\begin{aligned} \hbox {Re}\left[ {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}\sin \left( {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}(x_3^s -x_1^s )}} \right) }} \right] =\frac{1}{\tilde{c}^{2}}\frac{\pi \Omega \cos \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}+\pi \delta \sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}}{\sin ^{2}\frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh ^{2}\frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}+\cos ^{2}\frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh ^{2}\frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}} \end{aligned}$$
(33)

Furthermore, it is easy to show

$$\begin{aligned}&\sin ^{2}\frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh ^{2}\frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}\nonumber \\&\qquad +\,\cos ^{2}\frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh ^{2}\frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}\nonumber \\&\quad =\frac{1}{2}\left( {\cosh \frac{2\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}-\cos \frac{2\pi \delta }{\tilde{c}(x_3^s -x_1^s )}} \right) \end{aligned}$$
(34)

Thus, one can represent \(I_{1}(\Omega )\) as

$$\begin{aligned}&I_1 (\Omega ) =\frac{-2\pi }{\tilde{c}^{2}}\nonumber \\&\quad \times \,\left( {\frac{\Omega \sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}-\delta \cos \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}}{\cosh \frac{2\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}-\cos \frac{2\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}} \right) \nonumber \\ \end{aligned}$$
(35)

In a similar way, in order to obtain \(I_{2}(\Omega )\) one can write

$$\begin{aligned} I_2 (\Omega )= & {} \int \limits _{-\infty }^{+\infty } {\cos \Omega t\;e^{\delta t}\dot{x}(t) \mathrm{d}t=\hbox {Re}\left[ {\int \limits _{-\infty }^{+\infty } {e^{i\Omega t}e^{\delta t}\dot{x}(t) \mathrm{d}t} } \right] }\nonumber \\= & {} \hbox {Re}\left[ {\int \limits _{-\infty }^{+\infty } {e^{i\Omega t}e^{\delta t}\left\{ {-\tilde{c}(x_3^s -x_1^s )^{2}\frac{e^{\tilde{c}(x_3^s -x_1^s )t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{2}}} \right\} \mathrm{d}t} } \right] \nonumber \\= & {} -\tilde{c}(x_3^s -x_1^s )^{2}\hbox {Re}\left[ {\int \limits _{-\infty }^{+\infty } {\frac{e^{\left( {i\Omega +\delta +\tilde{c}(x_3^s -x_1^s )} \right) t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{2}}\mathrm{d}t} } \right] \nonumber \\= & {} -\hbox {Re}\left[ {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}\sin \left( {\frac{\left( {i\Omega +\delta } \right) \pi }{\tilde{c}(x_3^s -x_1^s )}} \right) }} \right] \end{aligned}$$
(36)

Using Eqs. (31), (33) and (34) gives

$$\begin{aligned}&I_2 (\Omega )=\frac{-2\pi }{\tilde{c}^{2}}\nonumber \\&\qquad \times \,\left( {\frac{\Omega \cos \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\sinh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}+\delta \sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}\cosh \frac{\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}}{\cosh \frac{2\pi \Omega }{\tilde{c}(x_3^s -x_1^s )}-\cos \frac{2\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}} \right) \nonumber \\ \end{aligned}$$
(37)

In order to calculate \(I_{3}\), one should write

$$\begin{aligned} I_3= & {} \int \limits _{-\infty }^{+\infty } {x^{2}\dot{x}^{2}e^{\delta t}} \mathrm{d}t=\int \limits _{-\infty }^{+\infty } \left\{ \left( {x_1^s +\frac{x_3^s -x_1^s }{1+e^{\tilde{c}(x_3^s -x_1^s )t}}} \right) \right. \nonumber \\&\left. \times \,\left( {-\tilde{c} e^{\tilde{c}(x_3^s -x_1^s )t}\frac{(x_3^s -x_1^s )^{2}}{\left( {1+e^{\tilde{c}(x_3^s -x_1^s )t}} \right) ^{2}}} \right) \right\} ^{2}e^{\delta t}\mathrm{d}t\nonumber \\ \end{aligned}$$
(38)

Calculating the expression \(\bigg \{ \big ( x_1^s +\frac{x_3^s -x_1^s }{1+e^{\tilde{c}(x_3^s -x_1^s )t}} \big )\big ( {-\tilde{c} e^{\tilde{c}(x_3^s -x_1^s )t}\frac{(x_3^s -x_1^s )^{2}}{\big ( {1+e^{\tilde{c}(x_3^s -x_1^s )t}} \big )^{2}}} \big ) \bigg \}^{2}\) leads to rewrite \(I_{3}\) in the form

$$\begin{aligned} I_3= & {} \tilde{c}^{2}e^{2\tilde{c}(x_3^s -x_1^s )t}(x_3^s -x_1^s )^{4}\left( (x_3^s )^{2}I_{3,1} +2x_1^s x_3^s I_{3,2} \right. \nonumber \\&\left. +\,(x_1^s )^{2}I_{3,3} \right) \end{aligned}$$
(39)

in which

$$\begin{aligned} I_{3,1}= & {} \int \limits _{-\infty }^{+\infty } {\frac{e^{\left( {\delta +2\tilde{c}(x_3^s -x_1^s )} \right) t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{6}}\mathrm{d}t} \nonumber \\= & {} \frac{\pi \delta }{5!\tilde{c}^{6}(x_3^s -x_1^s )^{6}\sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}\left( {\delta ^{2}-\tilde{c}^{2}(x_3^s -x_1^s )^{2}} \right) \nonumber \\&\times \,\left( {\delta -2\tilde{c}^{2}(x_3^s -x_1^s )} \right) \left( {\delta -3\tilde{c}^{2}(x_3^s -x_1^s )} \right) \end{aligned}$$
(40)
$$\begin{aligned} I_{3,2}= & {} \int \limits _{-\infty }^{+\infty } {\frac{e^{\left( {\delta +3\tilde{c}(x_3^s -x_1^s )} \right) t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{6}}\mathrm{d}t}\nonumber \\= & {} \frac{\pi \delta }{5!\tilde{c}^{6}(x_3^s -x_1^s )^{6}\sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}\left( {\delta ^{2}-\tilde{c}^{2}(x_3^s -x_1^s )^{2}} \right) \nonumber \\&\times \left( {\delta -2\tilde{c}^{2}(x_3^s -x_1^s )} \right) \left( {\delta +2\tilde{c}^{2}(x_3^s -x_1^s )} \right) \end{aligned}$$
(41)
$$\begin{aligned} I_{3,3}= & {} \int \limits _{-\infty }^{+\infty } {\frac{e^{\left( {\delta +4\tilde{c}(x_3^s -x_1^s )} \right) t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{6}}\mathrm{d}t} \nonumber \\= & {} \frac{\pi \delta }{5!\tilde{c}^{6}(x_3^s -x_1^s )^{6}\sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}\left( {\delta ^{2}-\tilde{c}^{2}(x_3^s -x_1^s )^{2}} \right) \nonumber \\&\times \,\left( {\delta +2\tilde{c}^{2}(x_3^s -x_1^s )} \right) \left( {\delta +3\tilde{c}^{2}(x_3^s -x_1^s )} \right) \end{aligned}$$
(42)

Substituting Eqs. (4042) in Eq. (39) results in

$$\begin{aligned} I_3= & {} \frac{\pi \delta }{5!\tilde{c}^{4}(x_3^s -x_1^s )^{2}\sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}\left( {\delta ^{2}-\tilde{c}^{2}(x_3^s -x_1^s )^{2}} \right) \nonumber \\&\times \,\left\{ {(x_3^s )^{2}\left( {\delta -2\tilde{c}(x_3^s -x_1^s )} \right) \left( {\delta -3\tilde{c}(x_3^s -x_1^s )} \right) } \right. \nonumber \\&\left. +\,2x_1^s x_3^s \left( {\delta -2\tilde{c}(x_3^s -x_1^s )} \right) \left( {\delta +2\tilde{c}(x_3^s -x_1^s )} \right) \right. \nonumber \\&\left. +\,(x_1^s )^{2}\left( {\delta +2\tilde{c}(x_3^s -x_1^s )} \right) \left( {\delta +3\tilde{c}(x_3^s -x_1^s )} \right) \right\} \nonumber \\ \end{aligned}$$
(43)

In order to find \(I_{4}\), one should calculate the below integral

$$\begin{aligned} I_4= & {} \int \limits _{-\infty }^{+\infty } {\dot{x}(t)e^{\delta t}} \mathrm{d}t\nonumber \\ \!= & {} \!\int \limits _{-\infty }^{+\infty }\! {\left( {-\tilde{c}(x_3^s \!-\!x_1^s )^{2}\frac{e^{\tilde{c}(x_3^s -x_1^s )t}}{(1+e^{\tilde{c}(x_3^s -x_1^s )t})^{2}}} \right) e^{\delta t}} \mathrm{d}t \end{aligned}$$
(44)

Multiplying the term \(e^{\delta t}\) in the parenthesis and setting \(a=\tilde{c}(x_3^s -x_1^s ),\;b=\tilde{c}(x_3^s -x_1^s )+\delta \), gives

$$\begin{aligned} I_4= & {} -\tilde{c}(x_3^s -x_1^s )^{2}\left( {\frac{\pi \delta }{\tilde{c}^{2}(x_3^s -x_1^s )^{2}\sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}}} \right) \nonumber \\= & {} \frac{-\pi \delta }{\tilde{c}\sin \frac{\pi \delta }{\tilde{c}(x_3^s -x_1^s )}} \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younesian, D., Norouzi, H. Chaos prediction in nonlinear viscoelastic plates subjected to subsonic flow and external load using extended Melnikov’s method. Nonlinear Dyn 84, 1163–1179 (2016). https://doi.org/10.1007/s11071-015-2561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2561-8

Keywords

Navigation