Skip to main content
Log in

State-dependent distributed-delay model of orthogonal cutting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a model of turning operations with state-dependent distributed time delay. We apply the theory of regenerative machine tool chatter and describe the dynamics of the tool-workpiece system during cutting by delay differential equations. We model the cutting force as the resultant of a force system distributed along the rake face of the tool, which results in a short distributed delay in the governing equation superimposed on the large regenerative delay. According to the literature on stress distribution along the rake face, the length of the chip–tool interface, where the distributed cutting force system is acting, is function of the chip thickness, which depends on the vibrations of the tool-workpiece system due to the regenerative effect. Therefore, the additional short delay is state dependent. It is shown that involving state-dependent delay in the model does not affect linear stability properties, but does affect the nonlinear dynamics of the cutting process. Namely, the sense of the Hopf bifurcation along the stability boundaries may turn from sub- to supercritical at certain spindle speed regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altintas, Y.: Manufacturing Automation-Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  2. Astakhov, V.P., Outeiro, J.C.: Modeling of the contact stress distribution at the tool–chip interface. Mach. Sci. Technol. 9(1), 85–99 (2005)

    Article  Google Scholar 

  3. Bachrathy, D., Stépán, G., Turi, J.: State dependent regenerative effect in milling processes. J. Comput. Nonlinear Dyn. 6(4), 041002 (2011)

    Article  Google Scholar 

  4. Bagchi, A., Wright, P.K.: Stress analysis in machining with the use of sapphire tools. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 409(1836), 99–113 (1987)

    Article  Google Scholar 

  5. Barrow, G., Graham, W., Kurimoto, T., Leong, Y.F.: Determination of rake face stress distribution in orthogonal machining. Int. J. Mach. Tool Des. Res. 22(1), 75–85 (1982)

    Article  Google Scholar 

  6. Bélair, J., Mackey, M.C.: Consumer memory and price fluctuations in commodity markets: an integrodifferential model. J. Dyn. Differ. Equ. 1(3), 299–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buryta, D., Sowerby, R., Yellowley, I.: Stress distributions on the rake face during orthogonal machining. Int. J. Mach. Tools Manuf. 34(5), 721–739 (1994)

    Article  Google Scholar 

  8. Chandrasekaran, H., Kapoor, D.V.: Photoelastic analysis of chip–tool interface stresses. ASME J. Eng. Ind. 87, 495–502 (1965)

    Article  Google Scholar 

  9. Childs, T.H.C., Mahdi, M.I.: On the stress distribution between the chip and tool during metal turning. CIRP Ann. Manuf. Technol. 38(1), 55–58 (1989)

    Article  Google Scholar 

  10. Cooke, K.L., Huang, W.: On the problem of linearization for state-dependent delay differential equations. Proc. Am. Math. Soc. 124(5), 1417–1426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dombóvári, Z., Stépán, G.: The effect of helix angle variation on milling stability. J. Manuf. Sci. Eng. Trans. ASME 134(5), 051015 (2012)

    Article  Google Scholar 

  12. Dombóvári, Z., Wilson, R.E., Stépán, G.: Estimates of the bistable region in metal cutting. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 3255–3271 (2008)

    Article  MATH  Google Scholar 

  13. Driver, R.D.: A two-body problem of classical electrodynamics: the one-dimensional case. Ann. Phys. 21(1), 122–142 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Germay, C., Denoël, V., Detournay, E.: Multiple mode analysis of the self-excited vibrations of rotary drilling systems. J. Sound Vib. 325(1–2), 362–381 (2009)

    Article  Google Scholar 

  16. Hajdu, D., Insperger, T.: Demonstration of the sensitivity of the Smith predictor to parameter uncertainties using stability diagrams. Int. J. Dyn. Control (2014). doi:10.1007/s40435-014-0142-1

    Google Scholar 

  17. Hartung, F.: Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174(2), 201–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hartung, F., Krisztin, T., Walther, H.O., Wu, J.: Functional differential equations with state-dependent delays: theory and applications. In: Drábek, P., Cañada, A., Fonda, A. (eds.) Handbook of Differential Equations: Ordinary Differential Equations, pp. 435–545. Elsevier/North-Holland, Amsterdam (2006)

    Chapter  Google Scholar 

  19. Hartung, F., Turi, J.: Stability in a class of functional differential equations with state-dependent delays. In: Corduneanu, C. (ed.) Qualitative Problems for Differential Equations and Control Theory, pp. 15–31. World Scientific, Singapore (1995)

    Google Scholar 

  20. Hartung, F., Turi, J.: On differentiability of solutions with respect to parameters in state-dependent delay equations. J. Differ. Equ. 135(2), 192–237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hartung, F., Turi, J.: Linearized stability in functional-differential equations with state-dependent delays. In: Proceedings of the Conference Dynamical Systems and Differential Equations, Added Volume of Discrete and Continuous Dynamical Systems, pp. 416–425 (2000)

  22. Insperger, T., Barton, D.A.W., Stépán, G.: Criticality of hopf bifurcation in state-dependent delay model of turning processes. Int. J. Non-Linear Mech. 43(2), 140–149 (2008)

    Article  MATH  Google Scholar 

  23. Insperger, T., Stépán, G., Turi, J.: State-dependent delay in regenerative turning processes. Nonlinear Dyn. 47(1–3), 275–283 (2007)

    MATH  Google Scholar 

  24. Kato, S., Yamaguchi, K., Yamada, M.: Stress distribution at the interface between tool and chip in machining. ASME J. Eng. Ind. 94(2), 683–689 (1972)

    Article  Google Scholar 

  25. Kilic, D.S., Raman, S.: Observations of the tool-chip boundary conditions in turning of aluminum alloys. Wear 262(7–8), 889–904 (2007)

    Article  Google Scholar 

  26. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  27. Lehotzky, D., Turi, J., Insperger, T.: Stabilizability diagram for turning processes subjected to digital PD control. Int. J. Dyn. Control 2(1), 46–54 (2014)

    Article  Google Scholar 

  28. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: Nonlinear motions of a flexible rotor with a drill bit: stick-slip and delay effects. Nonlinear Dyn. 72(1–2), 61–77 (2013)

    Article  MathSciNet  Google Scholar 

  29. Liu, X., Vlajic, N., Long, X., Meng, G., Balachandran, B.: State-dependent delay influenced drill-string oscillations and stability analysis. J. Vib. Acous. 136(5), 051008 (2014)

  30. Manitius, A.Z., Olbrot, A.W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Autom. Control AC–24(4), 541–553 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Molnár, T.G., Insperger, T.: On the robust stabilizability of unstable systems with feedback delay by finite spectrum assignment. J. Vib. Control (2014). doi:10.1177/1077546314529602

    Google Scholar 

  32. Molnár, T.G., Insperger, T.: On the effect of distributed regenerative delay on the stability lobe diagrams of milling processes. Period. Polytech. Mech. Eng. 59(3), 126–136 (2015)

    Article  Google Scholar 

  33. Molnár., T.G., Insperger, T., Hogan., S.J., Stépán, G.: Investigating multiscale phenomena in machining: the effect of cutting-force distribution along the tool’s rake face on process stability. In: Proceedings of the ASME International Design Engineering Technical Conferences, DETC2015-47165, Boston, MA (2015)

  34. Sieber, J., Engelborghs, K., Luzyanina, T., Samaey, G., Roose, D.: DDE-BIFTOOL v. 3.0 Manual-Bifurcation analysis of delay differential equations (2014). arxiv.org/abs/1406.7144

  35. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

    Book  MATH  Google Scholar 

  36. Stépán, G.: Delay-differential equation models for machine tool chatter. In: Moon, F.C. (ed.) Dynamics and Chaos in Manufacturing Processes, pp. 165–192. Wiley, New York (1997)

    Google Scholar 

  37. Stépán, G.: Delay, nonlinear oscillations and shimmying wheels. In: Moon, F.C. (ed.) New Applications of Nonlinear and Chaotic Dynamics in Mechanics, pp. 373–386. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  38. Stépán, G., Kalmár-Nagy, T.: Nonlinear regenerative machine tool vibrations. In: Proceedings of DETC’97. In: ASME Design and Technical Conferences, Sacramento, CA, USA, pp. 1–11 (1997)

  39. Sutter, G., Molinari, A., List, G., Bi, X.: Chip flow and scaling laws in high speed metal cutting. ASME J. Manuf. Sci. Eng. 134(2), 021005 (2012)

    Article  Google Scholar 

  40. Szalai, R., Orosz, G.: Decomposing the dynamics of heterogeneous delayed networks with applications to connected vehicle systems. Phys. Rev. 88(4), 040902 (2013)

    Google Scholar 

  41. Takács, D., Orosz, G., Stépán, G.: Delay effects in shimmy dynamics of wheels with stretched string-like tyres. Eur. J. Mech. A/Solids 28(3), 516–525 (2009)

    Article  MATH  Google Scholar 

  42. Toropov, A., Ko, S.L.: Prediction of tool–chip contact length using a new slip-line solution for orthogonal cutting. Int. J. Mach. Tools Manuf 43(12), 1209–1215 (2003)

  43. Usui, E., Takeyama, H.: A photoelastic analysis of machining stresses. ASME J. Eng. Ind. 82, 303–307 (1960)

    Article  Google Scholar 

  44. Woon, K.S., Rahman, M., Neo, K.S., Liu, K.: The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int. J. Mach. Tools Manuf. 48(12–13), 1395–1407 (2008)

    Article  Google Scholar 

  45. Yang, X., Liu, C.R.: A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method. Int. J. Mech. Sci. 44(4), 703–723 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian National Science Foundation under Grant OTKA- K105433 and OTKA-K101714. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement No. 340889.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás G. Molnár.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnár, T.G., Insperger, T. & Stépán, G. State-dependent distributed-delay model of orthogonal cutting. Nonlinear Dyn 84, 1147–1156 (2016). https://doi.org/10.1007/s11071-015-2559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2559-2

Keywords

Navigation