Skip to main content

Advertisement

Log in

Isolation control for inertially stabilized platform based on nonlinear friction compensation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear friction modeling and feed-forward compensation of the velocity-stabilized loop in inertially stabilized platform and closed-loop control system are studied in this paper. In order to obtain higher precision performance, an improved Stribeck friction model is proposed and designed according to the actual experimental data, whose parameters are identified by the genetic algorithm. The feed-forward compensation strategy is based on the improved model. The chattering problem and limit cycle, which arise from the changes of motion directions and the over compensation of the friction, are avoided by optimizing the compensation strategy. The actual experimental results demonstrate that the isolation performances of tracking system and carrier turbulence isolation system are superiority to the corresponding control systems without the compensations of nonlinear friction model proposed. This work has a great significance in actual applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hurak, Z., Rezac, M.: Image-based pointing and tracking for inertially stabilized airborne camera platform. IEEE Trans. Control Syst. Technol. 20(5), 1146–1159 (2012)

    Article  Google Scholar 

  2. Debruin, J.: Control systems for mobile satcom antennas. IEEE Control Syst. Mag. 28(1), 86–101 (2008)

    Article  MathSciNet  Google Scholar 

  3. Masten, M.: Inertially stabilized platforms for optical imaging systems: tracking dynamic dynamic targets with mobile sensors. IEEE Control Syst. Mag. 28(2), 47–64 (2008)

    Article  MathSciNet  Google Scholar 

  4. Hilkert, J.M.: Inertially stabilized platform technology: concepts and principles. IEEE Control Syst. Mag. 8(2), 26–46 (2008)

    Article  MathSciNet  Google Scholar 

  5. Hilkert, J. M.: A comparison of inertial line-of-sight stabilization techniques using mirrors. In: Proceedings of SPIE, vol. 5430, pp. 13–22. Bellingham, WA (2004)

  6. Du, H.L., Satish, S.N.: Modeling and compensation of low-velocity friction with bounds. IEEE Trans. Control Syst. Technol. 7(1), 10–21 (1999)

    Google Scholar 

  7. Sun, M.W., Wang, Z.H., Wang, Y.K., Chen, Z.Q.: On low-velocity compensation of brushless DC servo in the absence of friction model. IEEE Trans. Ind. Electron. 60(9), 3897–3905 (2013)

    Article  Google Scholar 

  8. Lee, T.H., Tan, K.K., Huang, S.N.: Adaptive friction compensation with a dynamical friction model. IEEE/ASME Trans. Mechatron. 16(1), 133–140 (2011)

    Article  Google Scholar 

  9. Amin, J., Friedland, B., Harnoy, A.: Implementation of a friction estimation and compensation technique. IEEE Control Syst. Mag. 17(4), 71–76 (1997)

    Article  Google Scholar 

  10. Jamaludin, Z., Brussel, H.V., Swevers, J.: Friction compensation of an XY feed table using friction-model-based feed-forward and an inverse-model-based disturbance observer. IEEE Trans. Ind. Electron. 56(10), 3848–3853 (2009)

    Article  Google Scholar 

  11. Armstrong, B., Dupont, P., Canudas, C.: A survey of models analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)

    Article  MATH  Google Scholar 

  12. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. ASME Appl. Mech. Rev. 58, 389–410 (2005)

    Article  Google Scholar 

  13. Canudas, C.: Dynamic friction models and control design. In: American Control Conference, pp. 1920–26. San Francisco, CA. USA (1993)

  14. Karnopp, D.: Computer simulation of stick slip friction in mechanical dynamic systems. ASME J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  15. Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribol. Lett. 16(1), 81–93 (2004)

    Article  Google Scholar 

  16. Dahl, P.R.: Measurement of Solid Friction Parameters of Ball Bearings. The Aerospace Corporation, EI Segundo, California (1977)

    Google Scholar 

  17. Canudas, C., Olsson, H., Atrom, K.J.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Al-Bender, F., Lampaert, V., Swevers, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50(11), 1883–1887 (2005)

    Article  MathSciNet  Google Scholar 

  19. Friedland, B., Park, Y.J.: On adaptive friction compensation. IEEE Trans. Autom. Control 37(10), 1609–1612 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Amthor, A., Zschaeck, S., Ament, C.: High precision position control using an adaptive friction compensation approach. IEEE Trans. Autom. Control 55(1), 274–278 (2010)

    Article  MathSciNet  Google Scholar 

  21. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  22. Mohammadi, A., Tavakoli, M., Marquez, H.J.: Disturbance observer-based control of non-linear haptic teleoperation systems. IET Control Theory Appl. 5(18), 2063–2074 (2011)

    Article  MathSciNet  Google Scholar 

  23. Huang, W., Liu, C., Hsu, P., Yeh, S.: Precision control and compensation of servomotors and machine tools via the disturbance observer. IEEE Trans. Ind. Electron. 57(1), 420–429 (2010)

    Article  Google Scholar 

  24. Armstrong, B., Amin, B.: PID control in the presence of static friction: a comparison of algebraic and describing function analysis. Automatica 32(5), 679–692 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Canudas, C., Carillo, J.: A modified EW-RLS algorithm for system with bounded disturbance. Automatica 26(3), 599–606 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Alonge, F., D’Ippolito, F., Ferrante, G., Raimondi, F.M.: Parameter identification of induction motor model using genetic algorithms. IEE Proc. Control Theory Appl. 145(6), 587–593 (1998)

  27. Papadopoulos, E.G., Chaspari, G.C.: Analysis and model-based control of servomechanisms with friction. ASME J. Dyn. Syst. Meas. Control 126(4), 911–915 (2004)

    Article  Google Scholar 

  28. Putra, D., Nijmeijer, H., Wouw, N.: Analysis of under compensation and overcompensation of friction in 1DOF mechanical systems. Automatica 43(8), 1387–1394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tustin, A.: The effects of backlash and of speed dependent friction on the stability of closed-cycle control systems. J. Inst. Electr. Eng. 94(2), 143–151 (1947)

    Google Scholar 

  30. Deng, K., Cong, S., Shang, W.W., Kong, D., Shen, H.: Nonlinear friction modelling and analysis for inertially stabilized platform. In: Hong Kong International Conference on Engineering and Applied Science (HKICEAS), pp. 606–611. Hong Kong (2013)

  31. Saha, A., Bhattacharya, B., Wahi, P.: A comparative study on the control of friction-driven oscillations by time-delayed feedback. Nonlinear Dyn. 60, 15–37 (2010)

    Article  MATH  Google Scholar 

  32. Demir, O., Keskin, I., Cetin, S.: Modelling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Non-linear Dyn. 67, 2139–2515 (2012)

    Article  Google Scholar 

  33. Cheng, C., Xu, W., Shang, J.: Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Non-linear Dyn. 79(2), 1235–1255 (2015)

    Article  Google Scholar 

  34. Hua, C., Chang, Y.: Decentralized adaptive neural network control for mechanical systems with dead-zone input. Nonlinear Dyn. 76(3), 1845–1855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaan, E., Yusuf, A.: High speed CNC system design. Part: II modeling and identification of feed drives. Int. J. Mach. Tools Manuf. 41(10), 1487–1509 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Projects of Ultra-Precision Control System Joint Lab. of USTC No. KD1012210167, and the National Natural Science Foundation of China under Grant No. 61573330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, S., Deng, K., Shang, W. et al. Isolation control for inertially stabilized platform based on nonlinear friction compensation. Nonlinear Dyn 84, 1123–1133 (2016). https://doi.org/10.1007/s11071-015-2557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2557-4

Keywords

Navigation