Skip to main content
Log in

A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we construct a new numerical approach for solving the time-fractional Fokker–Planck equation. The shifted Jacobi polynomials are used as basis functions, and the fractional derivative is described in the sense of Caputo. The proposed approach is a combination of shifted Jacobi Gauss–Lobatto scheme for the spatial discretization and the shifted Jacobi Gauss–Radau scheme for temporal approximation. The problem is then reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. In addition, our numerical algorithm is also applied for solving the space-fractional Fokker–Planck equation and the time–space-fractional Fokker–Planck equation. Numerical results are consistent with the theoretical analysis, indicating the high accuracy and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, New York (2006)

    Google Scholar 

  2. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  Google Scholar 

  3. Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  4. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econom. 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  6. Pinto, C.M.A., Tenreiro Machado, J.A.: Complex order van der Pol oscillator. Nonlinear Dyn. 65, 247–254 (2011)

    Article  MathSciNet  Google Scholar 

  7. Jesus, I.S., Tenreiro Machado, J.A.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gutierrez, R.E., Rosario, J.M., Machado, J.A.T.: Fractional order calculus: basic concepts and engineering applications. Math. Prob. Eng., 2010 Article ID 375858, 19 (2010)

  9. Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)

    Article  MATH  Google Scholar 

  10. Samko, S.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71, 653662 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  12. Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53, 215–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2087-0

  14. Podlubny, I.: Fractional differential equations. In: Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA (1999)

  15. Wang, L., Ma, Y., Meng, Z.: Haar wavelet method for solving fractional partial differential equations numerically. Appl. Math. Comput. 227, 66–76 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ma, J., Liu, J., Zhou, Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  19. Jiang, Y.L., Ding, X.L.: Waveform relaxation methods for fractional differential equations with the Caputo derivatives. J. Comput. Appl. Math. 238, 51–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)

    Article  MathSciNet  Google Scholar 

  21. Yin, F., Song, J., Leng, H., Lu, F.: Couple of the variational iteration method and fractional-order Legendre functions method for fractional differential equations. Sci. World J. 2014, Article ID 928765, 9 pp (2014)

  22. Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2012)

    Article  MathSciNet  Google Scholar 

  23. El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65, 55–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equation. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2), (2015)

  26. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59(5–6), 433–442 (2014)

    Google Scholar 

  27. Bhrawy, A.H., Tharwat, M.M., Yildirim, A.: A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations. Appl. Math. Model. 37, 4245–4252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, S., Liu, F., Anh, V., Turner, I., Chen, J.: A characteristic difference method for the variable-order fractional advection–diffusion equation. Appl. Math. Comput. 42, 371–386 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    Article  MathSciNet  Google Scholar 

  30. Bhrawy, A.H., Ahmed, Engry A., Baleanu, D.: An efficient collocation technique for solving generalized Fokker-Planck type equations with variable coefficients. Proc. Rom. Acad. A. 15, 322–330 (2014)

    MathSciNet  Google Scholar 

  31. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Gorder, R.A.V.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations. J. Comput. Phys. 26, 244–255 (2014)

    Article  Google Scholar 

  32. Xu, Q., Hesthaven, J.S.: Stable multi-domain spectral penalty methods for fractional partial differential equations. J. Comput. Phys. 257, 241–258 (2014)

    Article  MathSciNet  Google Scholar 

  33. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1), 101–116 (2015)

    Article  MathSciNet  Google Scholar 

  35. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38, 1434–1448 (2014)

    Article  MathSciNet  Google Scholar 

  36. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MathSciNet  Google Scholar 

  37. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x

  38. Risken, H.: The Fokker–Planck Equation: Method of Solution and Applications. Springer, Heidelberg (1989)

    Book  Google Scholar 

  39. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  40. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equations of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  41. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Deng, W.: Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  44. Jiang, Y.: A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker–Planck equation. Appl. Math. Model. 39, 1163–1171 (2015)

    Article  MathSciNet  Google Scholar 

  45. Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker–Planck equations. Appl. Math. Lett. 43, 38–43 (2015)

    Article  MathSciNet  Google Scholar 

  46. Odibat, Z., Momani, S.: Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives. Phys. Lett. A 369, 349–358 (2007)

    Article  MATH  Google Scholar 

  47. Zhao, Z., Li, C.: A numerical approach to the generalized nonlinear fractional Fokker–Planck equation. Comput. Math. Appl. 64, 3075–3089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Y.: [3, 3] Padé approximation method for solving space fractional Fokker–Planck equations. Appl. Math. Lett. 35, 109–114 (2014)

    Article  MathSciNet  Google Scholar 

  49. Vanani, S.K., Aminataei, A.: A numerical algorithm for the space and time fractional Fokker–Planck equation. Int. J. Numer. Methods Heat Fluid Flow 22, 1037–1052 (2012)

    Article  Google Scholar 

  50. Yildirim, A.: Analytical approach to Fokker–Planck equation with space- and time-fractional derivatives by means of the homotopy perturbation method. J. King Saud Univ. (Sci.) 22, 257–264 (2010)

    Article  Google Scholar 

  51. Wu, C., Lu, L.: Implicit numerical approximation scheme for the fractional Fokker–Planck equation. Appl. Math. Comput. 216, 1945–1955 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Deng, K., Deng, W.: Finite difference/predictor corrector approximations for the space and time fractional Fokker–Planck equation. Appl. Math. Lett. 25, 1815–1821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Szegö, G.: Orthogonal Polynomials. Colloquium Publications, XXIII. American Mathematical Society. ISBN 978-0-8218-1023-1, MR 0372517G (1939)

  55. Luke, Y.: The Special Functions and Their Approximations, vol. 2. Academic Press, New York (1969)

    MATH  Google Scholar 

  56. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, R.M., Ezz-Eldien, S.S., Bhrawy, A.H. et al. A Jacobi Gauss–Lobatto and Gauss–Radau collocation algorithm for solving fractional Fokker–Planck equations. Nonlinear Dyn 82, 1431–1440 (2015). https://doi.org/10.1007/s11071-015-2250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2250-7

Keywords

Navigation