Skip to main content
Log in

Stability analysis of a food chain model consisting of two competitive preys and one predator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present article deals with the intra-specific competition among predator populations of a prey-dependent three-component food chain model system consisting of two competitive preys and one predator. The behaviour of the system near the biologically feasible equilibria is thoroughly analysed. Boundedness and dissipativeness of the system are established. The stability analysis including local and global stability of the equilibria has been carried out in order to examine the behaviour of the system. The present system experiences Hopf–Andronov bifurcation for suitable choice of parameters. The results of this investigation reveal that the intra-specific competition among predator populations can be beneficial for the survival of predator. The ecological implications of both the analytical and the numerical findings are discussed at length towards the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lotka, A.J.: Elements of mathematical biology. Dover Publications, New York (1956)

  2. May, R.M.: Stability and Complexity in Model Ecosystems, vol. 6. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  3. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  4. Lv, S., Zhao, M.: The dynamic complexity of a three species food chain model. Chaos Solitons Fractals 37(5), 1469–1480 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Parrish, J.D., Saila, S.B.: Interspecific competition, predation and species diversity. J. Theor. Biol. 27(2), 207–220 (1970)

    Article  Google Scholar 

  6. Paine, R.T.: The Pisaster-Tegula interaction: prey patches, predator food preference, and intertidal community structure. Am. Nat. 100, 65–75 (1966)

  7. Cramer, N.F., May, R.M.: Interspecific competition, predation and species diversity: a comment. J. Theor. Biol. 34(2), 289–293 (1972)

    Article  Google Scholar 

  8. Fujii, K.: Complexity–stability relationship of two-prey–one-predator species system model: local and global stability. J. Theor. Biol. 69(4), 613–623 (1977)

    Article  Google Scholar 

  9. Hutson, V., Vickers, G.T.: A criterion for permanent coexistence of species, with an application to a two-prey one-predator system. Math. Biosci. 63(2), 253–269 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, W.: Coexistence, stability, and limiting behavior in a one-predator–two-prey model. J. Math. Anal. Appl. 179(2), 592–609 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nomdedeu, M.M., Willen, C., Schieffer, A., Arndt, H.: Temperature-dependent ranges of coexistence in a model of a two-prey-one-predator microbial food web. Mar. Biol. 159(11), 2423–2430 (2012)

    Article  Google Scholar 

  12. Klebanoff, A., Hastings, A.: Chaos in one-predator, two-prey models: general results from bifurcation theory. Math. Biosci. 122(2), 221 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Liu, Z., Yuan, R.: Stability and bifurcation in a harvested one-predator–two-prey model with delays. Chaos Solitons Fractals 27(5), 1395–1407 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Baek, H.: Species extinction and permanence of an impulsively controlled two-prey one-predator system with seasonal effects. BioSystems 98(1), 7–18 (2009)

    Article  Google Scholar 

  15. Liang, H., Liu, M., Song, M.: Extinction and permanence of the numerical solution of a two-prey one-predator system with impulsive effect. Int. J. Comput. Math. 88(6), 1305–1325 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhang, Y., Liu, B., Chen, L.: Extinction and permanence of a two-prey one-predator system with impulsive effect. Math. Med. Biol. 20(4), 309–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kar, T.K., Chattopadhyay, S.K., Pati, C.K.: A bio-economic model of two-prey one-predator system. J. Appl. Math. Inform. 27(5–6), 1411–1427 (2009)

    Google Scholar 

  18. Kar, T.K., Ghorai, A.: Dynamic behaviour of a delayed predator–prey model with harvesting. Appl. Math. Comput. 217(22), 9085–9104 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Comissiong, D.M.G., Sooknanan, J., Bhatt, B.: Criminals treated as predators to be harvested: a two prey one predator model with group defense, prey migration and switching. J. Math. Res. 4(4), p92 (2012)

    MathSciNet  Google Scholar 

  20. Xu, C., Li, P., Shao, Y.: Existence and global attractivity of positive periodic solutions for a Holling II two-prey one-predator system. Adv. Differ. Equ. 2012(1), 1–14 (2012)

    Article  MathSciNet  Google Scholar 

  21. Tripathi, J.P., Abbas, S., Thakur, M.: Local and global stability analysis of a two prey one predator model with help. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3284–3297 (2014)

    Article  MathSciNet  Google Scholar 

  22. Elettreby, M.F.: Two-prey one-predator model. Chaos Solitons Fractals 39(5), 2018–2027 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sharma, S., Samanta, G.P.: Dynamical behaviour of a two prey and one predator system. Differ. Equ. Dyn. Syst. 22(2), 125–145 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Leeuwen, E.V., Jansen, V.A.A., Bright, P.W.: How population dynamics shape the functional response in a one-predator-two-prey system. Ecology 88(6), 1571–1581 (2007)

    Article  Google Scholar 

  25. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61(1), 19–32 (1999)

    Article  Google Scholar 

  26. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1989)

    Google Scholar 

  27. Haque, M., Venturino, E.: An ecoepidemiological model with disease in predator: the ratio-dependent case. Math. Methods Appl. Sci. 30(14), 1791–1809 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hale, J.K.: Ordinary Differential Equations. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  29. Haque, M., Ali, N., Chakravarty, S.: Study of a tri-trophic prey-dependent food chainmodel of interacting populations. Math. Biosci. 246(1), 55–71 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Haque, M.: Ratio-dependent predator–prey models of interacting populations. Bull. Math. Biol. 71(2), 430–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Freedman, H.I.: Deterministic mathematical models in population ecology. Marcel dekker, inc (1980)

  32. Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr, N.G.: Crossing the hopf bifurcation in a live predator–prey system. Science 290(5495), 1358–1360 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors Mr. Nijamuddin Ali and Professor Santabrata Chakravarty gratefully acknowledge the financial support in part from Special Assistance Programme (SAP-II) sponsored by the University Grants Commission (UGC), New Delhi, India. They are thankful to the unanimous reviewers for making fruitful comments and suggestions in order to improve the quality of the work done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santabrata Chakravarty.

Appendix

Appendix

A seventh degree equation has seven roots in the complex domain. For the sake of brevity, its coefficients are not written explicitly in view of their complexity. We now find sufficient conditions for it to have at least a positive root. Since the degree of the equation is odd, by Descartes’ rule of sign, we get a real root and correspondingly a linear factor of the equation. The seven-degree equation can then be factorized as

$$\begin{aligned} \sum _{i=0}^{6}B_ix^i= & {} B_7(x+p)(x^6+A_1x^5+A_2x^4+A_3x^3\nonumber \\&+\,A_4x^2+A_5x+A_6)\nonumber \\= & {} B_7[x^7+(p+A_1)x^6+(pA_1+A_2)x^5\nonumber \\&+\,(pA_2+A_3)x^4+(pA_3+A_4)x^3\nonumber \\&+\,(pA_4+A_5)x^2+(pA_5+A_6)x+pA_6]\nonumber \\ \end{aligned}$$
(6.1)

where p is to be determined. By equating coefficients of like powers of x on the left and the right, we find \(A_1+p=\frac{B_6}{B_7}\), \(A_2+pA_1=\frac{B_5}{B_7}\), \(A_3+pA_2=\frac{B_4}{B_7}\), \(A_4+pA_3=\frac{B_3}{B_7}\), \(A_5+pA_4=\frac{B_2}{B_7}\), \(A_6+pA_5=\frac{B_1}{B_7}\), \(pA_6=\frac{B_0}{B_7}\), from which we have \(p=\frac{B_0}{B_7A_6}\). One root of Eq. (6.1) is thus found as \(x_6=-p\). By imposing conditions \( p< 0\), we obtain \(x_6>0\). This ensures that the feasible coexistence equilibrium is unique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Chakravarty, S. Stability analysis of a food chain model consisting of two competitive preys and one predator. Nonlinear Dyn 82, 1303–1316 (2015). https://doi.org/10.1007/s11071-015-2239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2239-2

Keywords

Navigation