Skip to main content
Log in

On multiple limit cycles in sliding-mode control systems via a generalized describing function approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a generalized describing function (DF) approach to analyze a class of frequency-dependent nonlinearities which are hard to deal with by traditional DF approaches. The proposed approach can intuitively predict the number, stability, and parameters of limit cycles by graphical illustrations of amplitude–phase characteristics. When applied to a 2-relative- degree sampling output feedback system, multiple limit cycles are found in the sliding-mode control. Both behaviors of complex limit cycles and influences of initial conditions on limit cycle oscillations are analyzed. Results show that each limit cycle has its own attraction region which can be estimated by the chattering amplitudes of the state variables, and initial conditions in different attraction regions may induce multiple limit cycles in the same control system. The undesired limit cycles can be eliminated by parameter tuning, such as control gains and sampling periods, to obtain a globally stable one. Simulations and hardware experiments further confirm the validity of the generalized DF approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  2. Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7(3), 328–342 (1999)

    Article  Google Scholar 

  3. Fridman, L.: An averaging approach to chattering. IEEE Trans. Autom. Control 46(8), 1260–1265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fridman, L.: Singularly perturbed analysis of chattering in relay control systems. IEEE Trans. Autom. Control 47(12), 2079–2084 (2002)

    Article  MathSciNet  Google Scholar 

  5. Levant, A.: Chattering analysis. IEEE Trans. Autom. Control 55(6), 1380–1389 (2010)

    Article  MathSciNet  Google Scholar 

  6. Wen, S.P., Zeng, Z.G., Huang, T.W., Zhang, Y.D.: Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans. Fuzzy Syst. 22(6), 1704–1713 (2014)

    Article  Google Scholar 

  7. He, X., Li, C.D., Shu, Y.L.: Triple-zero bifurcation in Van der Pol’s oscillator with delayed feedback. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5229–5239 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee, H., Utkin, V.I.: Chattering suppression methods in sliding mode control systems. Annu. Rev. Control 31(2), 179–188 (2007)

    Article  Google Scholar 

  9. Boiko, I.: On relative degree, chattering and fractal nature of parasitic dynamics in sliding mode control. J. Frankl. Inst. 351(4), 1939–1952 (2014)

    Article  MathSciNet  Google Scholar 

  10. Utkin, V.: Sliding mode control of DC/DC converters. J. Frankl. Inst. 350(8), 2146–2165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, W.B., Wang, Y.F.: Homaifa A. Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)

    Article  Google Scholar 

  12. Johansson, K.H., Barabanov, A.E., Åström, K.J.: Limit cycles with chattering in relay feedback systems. IEEE Trans. Autom. Control 47(9), 1414–1423 (2002)

    Article  MathSciNet  Google Scholar 

  13. Wang, B., Yu, X.H., Chen, G.R.: ZOH discretization effect on single-input sliding mode control systems with matched uncertainties. Automatica 45(1), 118–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Atherton, D.P.: Nonlinear Control Engineering—Describing Function Analysis and Design. Workingam Beks, Berkshire (1975)

    Google Scholar 

  15. Duarte, F.B., Machado, J.T.: Describing function of two masses with backlash. Nonlinear Dyn. 56(4), 409–413 (2009)

  16. Wu, D., Chen, K.: Frequency-domain analysis of nonlinear active disturbance rejection control via the describingfunction method. IEEE Trans. Ind. Electron. 60(9), 3906–3914 (2013)

  17. Oliveira, N.M.F., Kienitz, K.H., Misawa, E.A.: A describing function approach to the design of robust limit-cycle controllers. Nonlinear Dyn. 67(1), 357–363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, Y.J., Wang, Y.J.: Steady-state analysis for a class of sliding mode controlled systems using describing function method. Nonlinear Dyn. 30(3), 223–241 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Attari, M., Haeri, M., Tavazoei, M.S.: Analysis of a fractional order Van der Pol-like oscillator via describing function method. Nonlinear Dyn. 61(1/2), 265–274 (2010)

    Article  MATH  Google Scholar 

  20. Somieski, G.: An eigenvalue method for calculation of stability and limit cycles in nonlinear systems. Nonlinear Dyn. 26(1), 3–22 (2001)

    Article  MATH  Google Scholar 

  21. Kienitz, K.H.: On the implementation of the eigenvalue method for limit cycle determination in nonlinear systems. Nonlinear Dyn. 45(1–2), 25–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boiko, I.: Oscillations and transfer properties of relay servo systems with integrating plants. IEEE Trans. Autom. Control 53(11), 2686–2689 (2008)

    Article  MathSciNet  Google Scholar 

  23. Boiko, I., Fridman, L., Castellanos, M.I.: Analysis of second-order sliding-mode algorithms in the frequency domain. IEEE Trans. Autom. Control 49(6), 946–950 (2004)

    Article  MathSciNet  Google Scholar 

  24. Boiko, I., Fridman, L., Iriarte, R., et al.: Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica 42(5), 833–839 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krein, P.T., Bass, R.M.: Multiple limit cycle phenomena in switching power converters. In: Applied Power Electronics Conference and Exposition, Conference Proceedings 1989, Fourth Annual IEEE. pp. 143–148 (1989)

  26. Zhu, L.M., Huang, X.C.: Multiple limit cycles in a continuous culture vessel with variable yield. Nonlinear Anal. Theory Methods Appl. 64(4), 887–894 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Plestan, F., Moulay, E., Glumineau, A.: Robust output feedback sampling control based on second-order sliding mode. Automatica 46(6), 1096–1100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, Y., Qiu, Y.Y.: Chattering characteristics of a second-order sliding-mode control with adjustable parameters based on generalized DF approach. J. Vib. Shock 33(5), 102–107 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China under Grant No. 51175397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Qiu, Yy. On multiple limit cycles in sliding-mode control systems via a generalized describing function approach. Nonlinear Dyn 82, 819–834 (2015). https://doi.org/10.1007/s11071-015-2197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2197-8

Keywords

Navigation