Skip to main content

Compensation of Unmatched Disturbances via Sliding-Mode Control

A Comparison of Classical Results and Recent Methods Using Integral and Higher-Order Sliding-Mode

  • Chapter
  • First Online:
Variable-Structure Systems and Sliding-Mode Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 271))

Abstract

We study the disturbance rejection properties of recent and classical sliding-mode approaches with respect to unmatched disturbances. We consider nonlinear systems with arbitrary relative degree subject to various configurations of unmatched disturbances. The disturbances are state-dependent, time-varying, or a combination of both. For our analysis, we choose to transform the system into Byrnes–Isidori form and discuss the impact of the disturbances on the relative degree and stability properties. We investigate the capability of the considered sliding-mode approaches to compensate the disturbances on a given output of interest. In a comprehensive case study, we illustrate the characteristics of each approach on various system configurations. Finally, we isolate several mechanisms that are responsible for the disturbance compensation in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Further requirements on the boundedness of various derivatives of \(\phi \) may apply for some approaches considered and will be pointed out in the respective section.

References

  1. Cao, W.-J., Jian-Xin, X.: Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Trans. Autom. Control 49(8), 1355–1360 (2004)

    Article  MathSciNet  Google Scholar 

  2. Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control. 51(5), 853–858 (2006)

    Article  MathSciNet  Google Scholar 

  3. Estrada, A., Fridman, L.: Integral HOSM semiglobal controller for finite-time exact compensation of unmatched perturbations. IEEE Trans. Autom. Control 55(11), 2645–2649 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ferreira de Loza, A., Puntab, E., Fridman, L., Bartolini, G., Delprat, S.: Nested backward compensation of unmatched perturbations via HOSM observation. J. Frankl. Inst. 351(5), 2397–2410 (2014)

    Article  MathSciNet  Google Scholar 

  5. Rubagotti, M., Estrada, A., Castaños, F., Ferrara, A., Fridman, L.: Integral sliding mode control for nonlinear systems with matched and unmatched perturbations. IEEE Trans. Autom. Control 56(11), 2699–2704 (2011)

    Article  MathSciNet  Google Scholar 

  6. Posielek, T., Wulff, K., Reger, J.: Disturbance decoupling using a novel approach to integral sliding-mode. In: Proceedings of the IEEE International Workshop on Variable Structure Systems, pp. 420–426 (2018)

    Google Scholar 

  7. Bin, Y., Li, K.Q., Feng, N.L.: Disturbance decoupling robust control of vehicle full speed cruise dynamic system. Sci. China Ser. E: Technol. Sci. 52(12), 3545–3564 (2009)

    Article  MathSciNet  Google Scholar 

  8. Thomsen, S.C., Poulsen, N.K.: A disturbance decoupling nonlinear control law for variable speed wind turbines. In: Proceedings of the IEEE Mediterranean Conference on Control and Automation, pp. 1–6 (2007)

    Google Scholar 

  9. Levant, A.: Quasi-continuous high-order sliding-mode controllers. Proceedings of the IEEE Conference on Decision and Control 5, 4605–4610 (2003)

    Google Scholar 

  10. Estrada, A., Fridman, L.: Exact compensation of unmatched perturbation via quasi-continuous HOSM. In: Proceedings of the IEEE Conference on Decision and Control, pp. 2202–2207 (2008)

    Google Scholar 

  11. Estrada, A., Fridman, L., Iriarte, R.: Combined backstepping and HOSM control design for a class of nonlinear MIMO systems. Int. J. Robust Nonlinear Control 27(4), 566–581 (2016)

    Article  MathSciNet  Google Scholar 

  12. Dávila, J.: Exact tracking using backstepping control design and high-order sliding modes. IEEE Trans. Autom. Control 58(8), 2077–2081 (2013)

    Article  MathSciNet  Google Scholar 

  13. Yang, J., Li, S., Jinya, S., Xinghuo, Y.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  Google Scholar 

  14. Li, X., Zhou, J.: A sliding mode control design for mismatched uncertain systems based on states transformation scheme and chattering alleviating scheme. Trans. Inst. Meas. Control 40(8), 2509–2516 (2018)

    Article  Google Scholar 

  15. Ferreira de Loza, A., Cieslak, J., Henry, D., Zolghadri, A., Fridman, L.: Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification. Automatica 59, 200–205 (2015)

    Article  MathSciNet  Google Scholar 

  16. Smidt Gabbi, T., Abílio Gründling, H., Padilha Vieira, R.: Sliding mode current control based on disturbance observer applied to permanent magnet synchronous motor. In: Proceedings of the Brazilian Power Electronics Conference and Southern Power Electronics Conference, pp. 122–127 (2015)

    Google Scholar 

  17. Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  18. Isidori, A.: Nonlinear Control Systems. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  19. Shtessel, Y., Edwards, C., Fridman, L., Levant, A: Sliding Mode Control and Observation. Birkhäuser (2013)

    Google Scholar 

  20. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the Conference on Decision and Control, pp. 4591–4596 (1996)

    Google Scholar 

  21. Rubagotti, M., Estrada, A., Castaños, F., Ferrara, A., Fridman, L.: Optimal disturbance rejection via integral sliding mode control for uncertain systems in regular form. In: Proceedings of the IEEE International Workshop on Variable Structure Systems, pp. 78–82 (2010)

    Google Scholar 

  22. Kim, J.H., Gadsden, S.A., Wilkerson, S.A.: Adaptive integral sliding mode controller for longitudinal rotation control of a tilt-rotor aircraft. In: Proceedings of the IEEE Mediterranean Conference on Control and Automation, pp. 820–825 (2016)

    Google Scholar 

  23. Xu, J.-X., Guo, Z.-Q., Lee, T.H.: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot. IEEE Trans. Ind. Electron. 61(7), 3671–3681 (2014)

    Article  Google Scholar 

  24. Louk’yanov, A., Utkin, V.: Methods of reducing equations of dynamic systems to regular form. Autom. Remote. Control 42(4), 413–420 (1981)

    MathSciNet  Google Scholar 

  25. Fridman, L., Estrada, A., de Loza, A.F.: Higher order sliding mode based accurate tracking of unmatched perturbed outputs. In: Bandyopadhyay, B., Sivaramakrishnan, J., Spurgeon, S. (eds.) Advances in Sliding Mode Control. Lecture Notes in Control and Information Sciences, vol. 440, pp. 117–144. Springer, Berlin (2013)

    Chapter  Google Scholar 

  26. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  27. Fridman, L., Dávila, J., Levant, A.: High-order sliding-mode observation for linear systems with unknown inputs. Nonlinear Anal.: Hybrid Syst. 5, 189–205 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge support by the European Union Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement No. 734832. Parts of Sect. 9.4 have been previously published © 2018 IEEE. Reprinted, with permission, from T. Posielek, K. Wulff, and J. Reger. “Disturbance decoupling using a novel approach to integral sliding-mode”. In: Proceedings of the IEEE International Workshop on Variable Structure Systems, pages 420–426, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wulff .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Relative Degree Under Disturbance

A disturbance \(\phi :\mathbb R^n \times \mathbb {R} \rightarrow \mathbb R^{n}\) may change the relative degree of the nominal system for a given output y as the following example illustrates. Consider the system

$$\begin{aligned} \dot{x}_1&=x_2+\phi _1(x,t)\\ \dot{x}_2&=x_3\\ \dot{x}_3&=u \\ y&=x_1\,. \end{aligned}$$

For \(\phi _1=0\), the output y has relative degree 3, whereas for \(\phi _1(x,t)=x_3\) the output y has relative degree 2.

In order to formulate a condition that ensures that the relative degree is not impaired by the disturbance \(\phi \), we introduce the following multi-index notation for the Lie derivative of the sum of two vector fields f and \(\phi \). Let

$$\begin{aligned} (L_{f}L_{\phi })^{(\alpha ,\beta )}:=L_{f}^{\alpha _1}L^{\beta _1}_{\phi } \dots L_{f}^{\alpha _n}L^{\beta _n}_{\phi } \end{aligned}$$
(9.58)

denote the composition of Lie derivatives according to the combination indicated by \(\alpha _i,\beta _i\in \{0,1\}\). Observe that the Lie derivatives \(L_{f}\) and \(L_{\phi }\) do not commute in general. Therefore, we write for the nth Lie derivative of the vector field \(f+\phi \)

$$\begin{aligned} L^n_{f+\phi }=\sum _{|{(\alpha ,\beta )}|=n}(L_{f}L_{\phi })^{(\alpha ,\beta )}\,, \end{aligned}$$
(9.59)

where \(\alpha ,\beta \in \{0,1\}^n\) and

$$\begin{aligned} |{(\alpha ,\beta )}|:=\sum _{i=1}^{n}\alpha _i+\beta _i\,. \end{aligned}$$
(9.60)

The composition \((L_{f}L_{\phi })^{(\alpha ,\beta )}\) denotes permutations of Lie derivatives of length n.

Consider the system (9.1) with relative degree r, and then the definition (9.3) ensures \(L_{g}L_{f}^k h(x)=0\) and \(L_{g}L_{f}^{r-1} h(x)\ne 0\) for \(k \in \{0,\dots ,r-2\}\). In order to retain the relative degree, the condition

$$\begin{aligned} L_{g}L^k_{f+\phi }h(x)=0 \end{aligned}$$
(9.61a)
$$\begin{aligned} L_{g}L^{r-1}_{f+\phi }h(x)\ne 0 \, \end{aligned}$$
(9.61b)

must hold. Using the proposed notation (9.58)–(9.60), we may write

$$\begin{aligned} L_{g}L^k_{f+\phi }h(x)=L_{g}L_{f}^k h(x) +\sum _{|{(\alpha ,\beta )}|=k, \alpha \ne 1}L_{g}\big ( (L_{f}L_{\phi })^{(\alpha ,\beta )}h(x)\big )\quad \text {for}\quad k \in \mathbb {N}\,. \end{aligned}$$
(9.62)

Thus, with (9.62) we can see that condition (9.61a) is equivalent to

$$\begin{aligned} \sum _{|{(\alpha ,\beta )}|=k, \alpha \ne 1}L_{g}\big ( (L_{f}L_{\phi })^{(\alpha ,\beta )}h(x)\big )=0\quad \text {for}\quad k \in \{1,\dots , r-2\}\,. \end{aligned}$$
(9.63)

Further, we can see that with (9.3b) and (9.62), the condition

$$\begin{aligned} \sum _{|{(\alpha ,\beta )}|=r-1, \alpha \ne 1}L_{g}\big ( (L_{f}L_{\phi })^{(\alpha ,\beta )}h(x)\big ) = 0 \end{aligned}$$
(9.64)

is sufficient but not necessary to ensure (9.61b). These two conditions are fulfilled if

$$\begin{aligned} L_{g}\big ( (L_{f}L_{\phi })^{(\alpha ,\beta )}h(x)\big )&= 0,&\alpha ,\beta \in \{0,1\}^k, |{(\alpha ,\beta )}|=k\end{aligned}$$
(9.65a)
$$\begin{aligned} L_{g}\big ( (L_{f}L_{\phi })^{(\alpha ,\beta )}h(x)\big )&=0,&\alpha ,\beta \in \{0,1\}^{r-1}, |{(\alpha ,\beta )}|=r-1 \end{aligned}$$
(9.65b)

for \(k \in \{0, \dots , r-2\}\), \(|{(\alpha ,\beta )}|=k\) and \(\alpha {\ne } 1\) hold. Finally, this can be expressed by

$$\begin{aligned} L_{g}\big ( (L_{f}L_{\phi })^{(\alpha ,\beta )}h(x)\big ) = 0\, \end{aligned}$$
(9.66)

for \(k \in \{0, \dots , r-1\}\), \(\alpha ,\beta \in \{0,1\}^k\), \(|{(\alpha ,\beta )}|=k\) and \(\beta \ne 0\). Note that the nominal term \( L_gL_f^k h(x)\) is deliberately excluded in condition (9.66) for all \(k \in \{0, \dots , r-1\}\). But mind that for \(k \in \{0, \dots , r-2\}\) it is \( L_gL_f^k h(x)=0\), while \( L_gL_f^{r-1} h(x)\ne 0\) by definition of the relative degree of the nominal system. The proposed condition (9.66) is sufficient (but not necessary) to guarantee that the relative degree is not impaired by the disturbance. However, there are a number of system classes that satisfy this condition, such as systems in nonlinear block controllable form.

Appendix 2: Sliding-Mode Differentiator

As introduced in [26] and used in [4], the sliding-mode differentiator for a function f of order r takes the form

$$\begin{aligned} \dot{\nu }_0&=-\lambda _0 \varLambda ^{\frac{1}{r+1}}\varPsi ^{\frac{r}{r+1}}(\nu _0-f(t))+\nu _1\\ \dot{\nu }_i&=-\lambda _i \varLambda ^{\frac{1}{r+1-i}}\varPsi ^{\frac{r-i}{r-i+1}}(\nu _i-\dot{\nu }_{i-1})+\nu _{i+1}\\ \dot{\nu }_{r}&=-\lambda _{r} \varLambda \varPsi ^{0}(\nu _{r}-\dot{\nu }_{r-1})\,, \end{aligned}$$

where

$$\begin{aligned} \varPsi ^\beta (\zeta )=\begin{bmatrix}|{\zeta _1}|^\beta {{\,\mathrm{sign}\,}}(\zeta _1)&\dots&|{\zeta _n}|^\beta {{\,\mathrm{sign}\,}}(\zeta _n) \end{bmatrix}^{\top } \end{aligned}$$

and \(\nu _i\) is the ith derivative of f.

Appendix 3: Quasi-continuous Higher-Order Sliding-Mode Controller

We will consider the quasi-continuous controller from [9] for a switching function with relative degree r as the benchmark HOSM. The control is given by

$$\begin{aligned} u&=-\alpha \varPsi _{r-1,r}(\sigma ,\dot{\sigma },\dots ,\sigma ^{r-1})\,,\\ \varphi _{0,r}&=\sigma , \qquad N_{0,r}=|{\sigma }|, \qquad \varPsi _{0,r}=\frac{\varphi _{0,r}}{N_{0,r}}={{\,\mathrm{sign}\,}}(\sigma )\,,\\ \varphi _{i,r}&=\sigma ^{(i)}+\beta _i N^{\frac{r-i}{r-i+1}}_{i-1,r}\varPsi _{i-1,r}\\ N_{i,r}&=|{\sigma ^{(i)}}|+\beta _i N^{\frac{r-i}{r-i+1}}_{i-1,r}\\ \varPsi _{i,r}(\cdot )&=\frac{\varphi _{i,r}}{N_{i,r}}\,, \qquad i=0,\dots ,r-1\,, \end{aligned}$$

where \(\beta _1,\dots , \beta _{r-1}\in \mathbb {R}\). The first-order sliding-mode control law has the form

$$\begin{aligned} u&=\varPsi _{0,1}(\sigma )=-\alpha {{\,\mathrm{sign}\,}}(\sigma )\,, \end{aligned}$$
(9.67)

and the second-order control law takes the form

$$\begin{aligned} u&=-\alpha \varPsi _{1,2}(\sigma ,\dot{\sigma })= -\alpha \frac{\dot{\sigma }+|{\sigma }|^{\frac{1}{2}}{{\,\mathrm{sign}\,}}(\sigma )}{|{\dot{\sigma }}|+|{\sigma }|^{\frac{1}{2}}}\,. \end{aligned}$$
(9.68)

Appendix 4: Controller Design for the Simulation Examples

In this section, we state the control laws implemented for case studies in Sect. 9.6.

1.1 A 4.1 Case: No Internal Dynamics

For \(a=0\) and \(b=1\), we obtain the system

$$\begin{aligned} \dot{x}_1&=x_2+\phi _1(x,t)\end{aligned}$$
(9.69a)
$$\begin{aligned} \dot{x}_2&=x_3+\phi _2(x,t)\end{aligned}$$
(9.69b)
$$\begin{aligned} \dot{x}_3&=u\end{aligned}$$
(9.69c)
$$\begin{aligned} y&=x_1 \end{aligned}$$
(9.69d)

in controller normal form with y being an output with full relative degree \(r=3\).

1.1.1 FOSM and FOSM-D

Define the sliding manifold as in (9.22) by

$$\begin{aligned} \sigma (x)=x_1+2\dot{x}_1+\ddot{x}_1\,. \end{aligned}$$
(9.70)

For FOSM-D \(\dot{x}_1\) and \(\ddot{x}_1\) are numerically calculated. For FOSM, we use \(\dot{x}_1=x_2\) and \(\ddot{x}_1=x_3\) and use the sliding manifold proposed in (9.12) with

$$\begin{aligned} \sigma (x)=x_1+2x_2+x_3\,. \end{aligned}$$
(9.71)

Then, choose the control law \(w=-\alpha {{\,\mathrm{sign}\,}}(\sigma (x))\) from (9.13)/(9.23) with \(\alpha =40\) to obtain the desired control law by using the input transformation (9.14)/(9.24)

$$\begin{aligned} u&=-x_2-2x_3+w\,. \end{aligned}$$
(9.72)

1.1.2 ISMC and ISMC-D

Introduce the integrator v as in (9.31) with \(\dot{v}=x_1\) with v(0) so that the initial state lies on the sliding manifold. Then, define the sliding manifold

$$\begin{aligned} \sigma (v)&=v+3\dot{v}+3\ddot{v}+\dddot{v}\,. \end{aligned}$$

For ISMC-D, we use the numerical derivatives of v. For ISMC, we substitute \(\dot{v}=x_1\), \(\ddot{v}=x_2\), \(\dddot{v}=x_3\) and obtain the switching function as in (9.32) with

$$\begin{aligned} \sigma (v,x)&=v+3x_1+3x_2+x_3\,. \end{aligned}$$

Use the control law \(w=-\alpha {{\,\mathrm{sign}\,}}(\sigma (v,x))\) with \(\alpha =40\) and use the input transformation

$$\begin{aligned} u&=-x_1-3x_2-3x_3+w\, \end{aligned}$$

to obtain the control law as in (9.34).

1.1.3 nHOSM

Define the switching functions and virtual control laws as in (9.43)–(9.45)

$$\begin{aligned} \sigma _1(x)&=x_1\,&\sigma _2(x)&=x_2-w_1\,&\sigma _3(x)&=x_3-w_2\,\\ \dot{u}_{1,1}&=u_{1,2}\,&\dot{u}_{2,1}&=-\alpha _2 \varPsi _{2,3}(\sigma _2,\dot{\sigma }_2)\,&\\ \dot{u}_{1,2}&=-\alpha _1\varPsi _{2,3}(\sigma _1,\dot{\sigma }_1,\ddot{\sigma }_1)\,&\\ w_1&=u_{1,1}\,&w_2&=u_{2,1}\,&w_3&=-\alpha _3 {{\,\mathrm{sign}\,}}(\sigma _3)\, \end{aligned}$$

with \(\alpha _1=15\), \(\alpha _2=13\), and \(\alpha _3=40\). The derivatives \(\dot{\sigma }_1\), \(\ddot{\sigma }_1\), and \(\dot{\sigma }_2\) are numerically calculated. Finally, use the first-order sliding-mode input transformation (9.46a)

$$\begin{aligned} u=-\alpha _2 \varPsi _{2,3}(\sigma _2,\dot{\sigma }_2)+w_3\,. \end{aligned}$$
(9.73)

Note that we use an additional first-order sliding-mode transformation to make this control law more comparable to FOSM, FOSM-D, ISMC, and ISMC-D. This leads to a slightly different notation in comparison to (9.45).

1.1.4 nFOSM

Define the switching functions and virtual control laws as in (9.47)–(9.49)

$$\begin{aligned} \sigma _1(x)&=x_1&\sigma _2(x)&=x_2-w_1&\sigma _3(x)&=x_3-w_2\\ w_1&=-\sigma _1-\phi _1&w_2&=-\sigma _2+\phi _2-x_2-\dot{\phi }_1-\phi _1&w_3&=-\alpha {{\,\mathrm{sign}\,}}(\sigma _3) \end{aligned}$$

with \(\alpha = 40\). Use the first-order sliding-mode input transformation

$$\begin{aligned} u&=-2x_3+x_2+w_3\,. \end{aligned}$$

Again, we have introduced the additional first-order sliding-mode transformation which changes the notation in comparison to (9.49) slightly.

1.2 A 4.2 Case: Stable Internal Dynamics

Consider the system (9.51) with \(a=-1\)

$$\begin{aligned} \dot{x}_1&=x_1+x_3+\phi _1(x_1,t)\end{aligned}$$
(9.74a)
$$\begin{aligned} \dot{x}_2&=-x_2+x_3+\phi _2(x_1,x_2,t)\end{aligned}$$
(9.74b)
$$\begin{aligned} \dot{x}_3&=u\end{aligned}$$
(9.74c)
$$\begin{aligned} y&=x_1\,. \end{aligned}$$
(9.74d)

This system has the internal dynamics

$$\begin{aligned} \dot{\eta }_1&=-\eta _1+\xi _2-\xi _1\,. \end{aligned}$$
(9.75)

It is easy to see that the zero dynamics are asymptotically stable at 0. Thus, it is sufficient to find a control law w for the system (9.54a), (9.54b) to stabilize the system (9.54a)–(9.54c).

1.2.1 FOSM and FOSM-D

For ISMC-D, use the sliding manifold

$$\begin{aligned} \sigma (x)=x_1+\dot{x}_1\, \end{aligned}$$

with numerical derivatives. For ISMC, use the substitution \(\dot{x}_1=x_1+x_3\,\) to obtain the sliding manifold

$$\begin{aligned} \sigma (x)=2x_1+x_3\,. \end{aligned}$$

Then, choose \(w=-\alpha {{\,\mathrm{sign}\,}}(\sigma )\) with \( \alpha = 40 \) to obtain the desired control law by using the input transformation

$$\begin{aligned} u&=-2(x_1+x_3)+w\,. \end{aligned}$$

1.2.2 ISMC and ISMC-D

Introduce the integrator v with \(\dot{v}=x_1\). For ISMC-D, define the sliding manifold

$$\begin{aligned} \sigma (v)=v+2\dot{v}+\ddot{v}\,. \end{aligned}$$

For ISMC, we use \(\dot{v}=x_1\) and \(\ddot{v}=x_1+x_3\) to obtain

$$\begin{aligned} \sigma (v,x)=v+2x_1+x_1+x_3 \end{aligned}$$

and choose \(w=-\alpha {{\,\mathrm{sign}\,}}(\sigma )\) with \(\alpha =40\). Finally, use the input transformation

$$\begin{aligned} u&=x_1+3(x_1+x_3)+w\,. \end{aligned}$$

1.2.3 nHOSM

Define

$$\begin{aligned} \sigma _1&=\xi _1&\sigma _2&=\xi _2-w_1\\ \dot{u}_{1,1}&=-\alpha _1\varPsi _{1,2}(\sigma _1,\dot{\sigma }_1)\\ w_1&=u_{1,1}&w_2&=-\alpha _2 {{\,\mathrm{sign}\,}}(\sigma _2) \end{aligned}$$

with \(\alpha _1=2\), \(\alpha _2=40\). Use the first-order sliding-mode transformation to obtain

$$\begin{aligned} w&=-\alpha _1\varPsi _{1,2}(\sigma _1,\dot{\sigma }_1)+w_2 \end{aligned}$$

and the final control law

$$\begin{aligned} u&=-x_1-x_3+w\,. \end{aligned}$$

Note that we use an additional first-order sliding-mode transformation to make this control law more comparable to FOSM, FOSM-D, ISMC, and ISMC-D. This leads to a slightly different notation in comparison to (9.45).

1.2.4 nFOSM

Define

$$\begin{aligned} \sigma _1&=\xi _1&\sigma _2&=\xi _2-w_1\\ w_1&=-\phi _1 -\xi _1\,.&w_2&=-\alpha {{\,\mathrm{sign}\,}}(\sigma _2) \end{aligned}$$

with \(\alpha =40\). Use the first-order sliding-mode transformation

$$\begin{aligned} w&=-x_1+x_3+w_2\, \end{aligned}$$

and obtain the final control law

$$\begin{aligned} u&=-x_1-x_3+w\, . \end{aligned}$$

1.3 A 4.3 Case: Unstable Internal Dynamics

Consider the system (9.51) with \(a=1\)

$$\begin{aligned} \dot{x}_1&=-x_1+x_3+\phi _1(x_1,t)\end{aligned}$$
(9.76a)
$$\begin{aligned} \dot{x}_2&=x_2+x_3+\phi _2(x_1,x_2,t)\end{aligned}$$
(9.76b)
$$\begin{aligned} \dot{x}_3&=u\end{aligned}$$
(9.76c)
$$\begin{aligned} y&=x_1\,. \end{aligned}$$
(9.76d)

This system has the internal dynamics

$$\begin{aligned} \dot{\eta }_1&=\eta _1+\xi _2-\xi _1\,. \end{aligned}$$
(9.77)

These internal dynamics are unstable. Thus, it is not sufficient anymore to find a control law w for the system (9.54a), (9.54b) to stabilize the system (9.54a)–(9.54c). This makes FOSM, FOSM-D, nHOSM, and nFOSM not straightforwardly applicable. Thus, we only consider ISMC and discuss its results.

1.3.1 ISMC

Introduce the integrator v with \(\dot{v}=x_1\). Consider the new output

$$\begin{aligned} h_{v}(v,x)&=2v+x_1-x_2\, \end{aligned}$$

with full relative degree with respect to the input u. Then define the sliding manifold

$$\begin{aligned} \sigma (v,x)=h_{v}(v,x)+3\frac{dh_{v}(v,x)}{dt}+3\frac{d^2h_{v}(v,x)}{dt^2}+\frac{d^3h_{v}(v,x)}{dt^3}\,. \end{aligned}$$

Substitute \(\frac{dh_{v}(v,x)}{dt}=x_1-x_2\) , \(\frac{d^2h_{v}(v,x)}{dt^2}=-x_1-x_2\), and \(\frac{d^3h_{v}(v,x)}{dt^3}=-x_1-x_2-2x_3\) and define \(w=-\alpha {{\,\mathrm{sign}\,}}(\sigma )\) with \(\alpha =40\). Finally, use the first-order sliding-mode input transformation

$$\begin{aligned} u=-\frac{8x_2+6x_3-\alpha {{\,\mathrm{sign}\,}}(\sigma )}{2}\,. \end{aligned}$$
(9.78)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wulff, K., Posielek, T., Reger, J. (2020). Compensation of Unmatched Disturbances via Sliding-Mode Control. In: Steinberger, M., Horn, M., Fridman, L. (eds) Variable-Structure Systems and Sliding-Mode Control. Studies in Systems, Decision and Control, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-36621-6_9

Download citation

Publish with us

Policies and ethics