Skip to main content
Log in

Gaussian sum approximation filter for nonlinear dynamic time-delay system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on designing Gaussian sum approximation filter for both accurately and rapidly estimating the state of a class of nonlinear dynamic time-delay systems. Firstly, a novel nonaugmented Gaussian filter (GF) is derived, whose superiority in computation efficiency is theoretically analyzed as compared to the standard augmented GF. Secondly, a nonaugmented Gaussian sum filter (GSF) is proposed to accurately capture the state estimates by a weight sum of the above-proposed GF. In GSF, each GF component is independent from the others and can be performed in a parallel manner so that GSF is conducive to high-performance computing across many compute nodes. Finally, the performance of the proposed GSF is demonstrated by a vehicle suspension system with time delay, where the GSF achieves higher accuracy than the single GF and is computationally much more efficient than the particle filter with the almost same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, S., Jeon, M., Shin, V.: Distributed estimation fusion with application to a multisensory vehicle suspension system with time delays. IEEE Trans. Ind. Electron. 59(11), 4475–4482 (2012)

    Article  Google Scholar 

  2. Capisani, L.M., Ferrara, A., de Loza, A.F., Fridman, L.M.: manipulator fault diagnosis via higher order sliding-mode observers. IEEE Trans. Ind. Electron. 59(10), 3979–3986 (2012)

  3. Dong, H.L., Wang, Z.D., Gao, H.J.: Robust H-infinity filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts. IEEE Trans. Signal Process. 58(4), 1957–1966 (2010)

    Article  MathSciNet  Google Scholar 

  4. Wang, Z.D., Lam, J., Liu, X.H.: Filtering for a class of nonlinear discrete-time stochastic systems with state delays. Int. J. Comput. Appl. Math. 201, 153–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kahlil, M., Sarkar, A., Adhikari, S.: Nonlinear filters for chaotic oscillatory systems. Nonlinear Dyn. 55(1), 113–137 (2009)

    Article  Google Scholar 

  6. Xu, Y., Vedula, P.: A moment-based approach for nonlinear stochastic tracking control. Nonlinear Dyn. 67(1), 119–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, H.P., Shi, P.: Robust H-infinity filtering for nonlinear stochastic systems with uncertainties and Markov delays. Automatica 48(1), 159–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Murray, L., Storkey, A.: Particle smoothing in continuous time: a fast approach via density estimation. IEEE Trans. Signal Process. 59(3), 1017–1026 (2011)

    Article  MathSciNet  Google Scholar 

  9. Wang, X.X., Liang, Y., Pan, Q., Yang, F.: A Gaussian approximation recursive filter for nonlinear systems with correlated noises. Automatica 48(9), 2290–2297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, X.X., Liang, Y., Pan, Q., Zhao, C.H., Yang, F.: Nonlinear Gaussian smoothers with colored measurement noise. IEEE Trans. Autom. Control 60(3), 870–876 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horwood, J.T., Poore, A.B.: Adaptive Gaussian sum filters for space surveillance. IEEE Trans. Autom. Control 56(8), 1777–1790 (2011)

    Article  MathSciNet  Google Scholar 

  13. Subrahmanya, N., Shin, Y.C.: Adaptive divided difference filtering for simultaneous state and parameter estimation. Automatica 45(7), 1686–1693 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Terejanu, G., Singla, P., Singh, T., Scott, P.D.: Adaptive Gaussian sum filter for nonlinear Bayesian estimation. IEEE Trans. Autom. Control 56(9), 2151–2156 (2011)

    Article  MathSciNet  Google Scholar 

  15. Wu, Y.X., Hu, D.W., Wu, M.P., Hu, X.P.: A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process. 54(8), 2910–2921 (2006)

    Article  Google Scholar 

  16. Julier, S., Uhlmann, J.K., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nørgaard, M., Poulsen, N.K., Ravn, O.: New developments in state estimation for nonlinear systems. Automatica 36(11), 1627–1638 (2000)

    Article  MathSciNet  Google Scholar 

  18. Arasaratnam, I., Haykin, S.: Cubature Kalman filter. IEEE Trans. Autom. Control 54(8), 1254–1269 (2009)

    Article  MathSciNet  Google Scholar 

  19. Jia, B., Xin, M., Cheng, Y.: Sparse-grid quadrature nonlinear filtering. Automatica 48(2), 327–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jia, B., Xin, M., Cheng, Y.: Relations between sparse-grid quadrature rule and spherical-radial cubature rule in nonlinear Gaussian estimation. IEEE Trans. Autom. Control 60(1), 199–204 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wang, X.X., Pan, Q., Liang, Y., Yang, F.: Gaussian smoothers for nonlinear systems with one-step randomly delayed measurements. IEEE Trans. Autom. Control 58(7), 1828–1835 (2013)

    Article  MathSciNet  Google Scholar 

  22. Simo, S.: Unscented Rauch–Tung–Striebel smoother. IEEE Trans. Autom. Control 53(3), 845–849 (2008)

    Article  Google Scholar 

  23. Arasaratnam, I., Haykin, S.: Cubature Kalman smoother. Automatica 47(10), 2245–2250 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Jia, B., Xin, M., Cheng, Y.: High-degree cubature Kalman filter. Automatica 49(2), 510–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiong, K., Zhang, H.Y., Chan, C.W.: Performance evaluation of UKF-based nonlinear filtering. Automatica 42(2), 261–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiong, K., Zhang, H.Y., Chan, C.W.: Author’s reply to comments on performance evaluation of UKF-based nonlinear filtering. Automatica 43(3), 569–570 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, Y.X., Hu, D.W., Hu, X.P.: Comments on performance evaluation of UKF-based nonlinear filtering. Automatica 43(3), 567–568 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, S.Y., Feng, J.C., Tse, C.K.: A class of stable square-root nonlinear information filters. IEEE Trans. Autom. Control 59(7), 1893–1898 (2014)

    Article  MathSciNet  Google Scholar 

  29. Straka, O., Duník, J., Šimandl, M.: Truncation nonlinear filters for state estimation with nonlinear inequality constraints. Automatica 48(1), 273–286 (2012)

    Article  MATH  Google Scholar 

  30. Bruno, O.S.T., Leonardo, A.B.T., Luis, A.A., Denni, S.B.: On unscented Kalman filtering with state interval constraints. J. Process Control 20(1), 45–57 (2010)

    Article  Google Scholar 

  31. de Forbes, J.R.J., Ruiter, A.H., Zlotnik, D.E.: Continuous-time norm-constrained Kalman filtering. Automatica 50(10), 2546–2554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chung, K.L.: A Course in Probability Theory. Academic Press, Nwew York (2001)

  33. Fan, J.Q., Yao, Q.W.: Nonlinear Time Series. Springer, German (2005)

    Google Scholar 

  34. Shi, P., Luan, X.L., Liu, F.: H\(\infty \) filtering for discrete-time systems with stochastic incomplete measurement and mixed delays. IEEE Trans. Ind. Electr. 59(6), 2732–2739 (2012)

    Article  Google Scholar 

  35. Ho, Y.C., Lee, R.C.K.: A bayesian approach to problems in stochastic estimation and control. IEEE Trans. Autom. Control 9, 333–339 (1964)

    Article  MathSciNet  Google Scholar 

  36. Priemer, R., Vacroux, A.G.: Estimation in linear systems with multiple time delays. IEEE Trans. Autom. Control 13(4), 384–387 (1969)

  37. Golub, G.H., Van Loan, C.F.: Matrix Computations, Fourth edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  38. Plataniotis, K.N., Androutsos, D., Venetsanopoulos, A.N.: Nonlinear filtering of non-Gaussian noise. J. Intell. Robot. Syst. 19, 207–231 (1997)

    Article  Google Scholar 

  39. Wu, H., Chen, G.: Suboptimal Kalman filtering for linear systems with Gaussian-sum type of noise. Math. Comput. Model. 29, 101–125 (1999)

    Article  MATH  Google Scholar 

  40. Zia, A., Kirubarajan, T., Reilly, J.P., Yee, D., Punithakumar, K., Shirani, S.: An EM algorithm for non-linear state estimation with model uncertainties. IEEE Trans. Signal Process. 56(3), 921–936 (2008)

    Article  MathSciNet  Google Scholar 

  41. Arasaratnam, I., Haykin, S.: discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proc. IEEE 95(5), 953–977 (2007)

    Article  Google Scholar 

  42. Yagiz, N., Hacioglu, Y.: Backstepping control of a vehicle with active suspensions. Control Eng. Pract. 16(12), 1457–1467 (2008)

    Article  Google Scholar 

  43. Zhu, Q., Ishitobi, M.: Chaotic vibration of a nonlinear full-vehicle model. Int. J. Solids Struct. 43(3), 747–759 (2006)

    Article  MATH  Google Scholar 

  44. Dai, L., Wu, J.: Stability and vibrations of an all-terrain vehicle subjected to nonlinear structural deformation and resistance. Commun. Nonlinear Sci. Numer. Simul. 12(1), 72–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundations of China (61203234, 61135001, 61374023, 61374159), and in part by the Fundamental Research Funds for the Central Universities (3102015ZY049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxu Wang.

Appendices

Appendix 1

For symmetric and invertible matrices \({{\mathbf {A}}}\in \mathbf{R}^{n}\), \({{\mathbf {B}}}\in \mathbf{R}^{n\times m}\) and \({{\mathbf {C}}}\in \mathbf{R}^{m}\), if \({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}}\) is invertible, then

  1. (i)

    \({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}}\) is invertible

  2. (ii)

    \({{\mathbf {D}}}=\left[ {{\begin{array}{c@{\quad }c} {{\mathbf {A}}}&{} {{\mathbf {B}}} \\ {{{\mathbf {B}}}^{\mathrm{T}}}&{} {{\mathbf {C}}} \\ \end{array} }} \right] \) are invertible

  3. (iii)
    $$\begin{aligned}&{{\mathbf {D}}}^{-1}=\left[ \begin{array}{cc} ({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}})^{-1}&{} -{{\mathbf {A}}}^{-1} {{\mathbf {B}}}({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1} {{\mathbf {B}}})^{-1} \\ -{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}} ({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1} {{\mathbf {B}}}^{\mathrm{T}})^{-1}&{} ({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}} {{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}\\ \end{array} \right] ,\nonumber \\ \end{aligned}$$
    (61)

or

$$\begin{aligned} {{\mathbf {D}}}^{-1}= & {} \left[ {{\begin{array}{c@{\quad }c} 0&{} 0 \\ 0&{} {{{\mathbf {C}}}^{-1}} \end{array} }} \right] +\left[ {{{\mathbf {I}}}_n -{{\mathbf {B}}}{{\mathbf {C}}}^{-1}} \right] ^{\mathrm{T}}\nonumber \\&\times \left( {{{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1} {{\mathbf {B}}}^{\mathrm{T}}} \right) ^{-1} \left[ {{{\mathbf {I}}}_n -{{\mathbf {B}}}{{\mathbf {C}}}^{-1}} \right] . \end{aligned}$$
(62)

Proof

Note that

$$\begin{aligned} \left| {{\mathbf {D}}} \right|= & {} \left| {{\mathbf {A}}} \right| \left| {{{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}}} \right| =\left| {{\mathbf {C}}} \right| \left| {{{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}}} \right| \ne 0,\nonumber \\ \end{aligned}$$
(63)

where \(\left| {{{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}}} \right| \ne 0\) is obvious such that \({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}}\) and \({{\mathbf {D}}}\) are invertible.

From (61), it can be obtained that

$$\begin{aligned} {{\mathbf {DD}}}^{-1}={{\mathbf {D}}}^{-1}{{\mathbf {D}}}={{\mathbf {I}}}_{n+m}. \end{aligned}$$
(64)

Therefore the inverse of \({{\mathbf {D}}}\) can be described by (61) in result (iii). \(\square \)

In addition, the following two equations are available

$$\begin{aligned}&{{\mathbf {A}}}^{-1}{{\mathbf {B}}}({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}=({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}})^{-1} \bullet \nonumber \\&\quad ({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}}) {{\mathbf {A}}}^{-1}{{\mathbf {B}}}({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}\nonumber \\&\qquad =({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}})^{-1}{{\mathbf {B}}}{{\mathbf {C}}}^{-1}, \end{aligned}$$
(65)
$$\begin{aligned}&{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}}({{\mathbf {A}}}-{{\mathbf {B}}}{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}})^{-1}{{\mathbf {B}}}{{\mathbf {C}}}^{-1}\nonumber \\&\quad ={{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}} ({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}\nonumber \\&\quad =({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}-{{\mathbf {C}}}^{-1}{{\mathbf {C}}}({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}\nonumber \\&\qquad +\,{{\mathbf {C}}}^{-1}{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}}({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}\nonumber \\&\quad =({{\mathbf {C}}}-{{\mathbf {B}}}^{\mathrm{T}}{{\mathbf {A}}}^{-1}{{\mathbf {B}}})^{-1}-{{\mathbf {C}}}^{-1}. \end{aligned}$$
(66)

From (65) and (66), rearranging (62) yield the result (iii).

Appendix 2

Considering the augmented state \({{\mathbf {X}}}_k \), the nonlinear dynamic model in (1) is transformed to the following equivalent model, i.e.,

$$\begin{aligned} {{\mathbf {X}}}_{k +1} ={{\mathbf {G}}}({{\mathbf {X}}}_k )+{\varvec{\varGamma }} _k {{\mathbf {w}}}_k , \end{aligned}$$
(67)

with \({\varvec{\varGamma }} _k =[1,0,\ldots ,0]^{\mathrm{T}}\) and

$$\begin{aligned} {{\mathbf {G}}}({{\mathbf {X}}}_k )=\left[ {{\begin{array}{c} {{{\mathbf {f}}}({\mathbf {x}}_k )+\sum _{j=1}^d {{{\mathbf {g}}}_j ({\mathbf {x}}_{k-j} )} } \\ {{{\mathbf {x}}}_k } \\ \vdots \\ {{{\mathbf {x}}}_{k-d+1} } \\ \end{array} }} \right] . \end{aligned}$$

According to [18], the augmented GF for the nonlinear time delay system can be given as follows,

Step 1: Prediction. Given the Gaussian approximation density \(p_{\mathrm{GF}}^i ({{\mathbf {X}}}_k |{{\mathbf {Z}}}_k )\) with the estimates \({\hat{{\mathbf {X}}}}_k^i \) and \({{\mathbf {P}}}_k^{X,i} \) at time k, the predicted estimates of the augmented state can be computed as follows

$$\begin{aligned} {\hat{{\mathbf {X}}}}_{k +1| k}^i= & {} \hbox {E}^{i}[{{\mathbf {G}}}({{\mathbf {X}}}_k )|{{\mathbf {Z}}}_k ]=\int {{{\mathbf {G}}}({{\mathbf {X}}}_k )p_{\mathrm{GF}}^i ({{\mathbf {X}}}_k |{{\mathbf {Z}}}_k )} \mathrm{d}{{\mathbf {X}}}_k , \nonumber \\\end{aligned}$$
(68)
$$\begin{aligned} {{\mathbf {P}}}_{k+1 | k}^{X,i}= & {} \hbox {E}^{i}[{\tilde{{\mathbf {X}}}}_{k\hbox {+1|}k}^i ({\tilde{{\mathbf {{X}}}}}_{k +1| k}^i )^{\mathrm{T}}|{{\mathbf {Z}}}_k ]\nonumber \\= & {} \int {{{\mathbf {G}}}({{\mathbf {X}}}_k ){{\mathbf {G}}}^{\mathrm{T}}({{\mathbf {X}}}_k )p_{\mathrm{GF}}^i ({{\mathbf {X}}}_k |{{\mathbf {Z}}}_k )} \mathrm{d}{{\mathbf {X}}}_k.\nonumber \\&-{\hat{{\mathbf {X}}}}_{k + 1|k}^i ({\hat{{\mathbf {X}}}}_{k + 1|k}^i )^{\mathrm{T}}+{\varvec{\varGamma }} _k Q_k {\varvec{\varGamma }} _k^{\mathrm{T}} \end{aligned}$$
(69)

Step 2 : Correction. Given the Gaussian approximation density \(p_{\mathrm{GF}}^i ({{\mathbf {X}}}_{k+1} |{{\mathbf {Z}}}_k )\)with the estimates \({\hat{{\mathbf {X}}}}_{k+1|k}^i \) and \({{\mathbf {P}}}_{k+1|k}^{X,i} \) at time k+1, the filtering density at time k+1 can be updated as the Gaussian distribution, i.e.,

$$\begin{aligned} p_{\mathrm{GF}}^i ({{\mathbf {X}}}_{k + 1} |{{\mathbf {Z}}}_{k + 1} )={\mathcal {N}}({{\mathbf {X}}}_{k+1} ;{\hat{{\mathbf {X}}}}_{k+1}^i ,{{\mathbf {P}}}_{k+1}^{X,i} ), \end{aligned}$$
(70)

with the analytical computation

$$\begin{aligned} \left\{ {\begin{array}{c} {\hat{{\mathbf {X}}}}_{k+1}^i ={\hat{{\mathbf {X}}}}_{k+1|k}^i +{{\mathbf {K}}}_{k+1}^i ({{{\mathbf {z}}}}_{k+1} -{\hat{{\mathbf {z}}}}_{k+1|k}^i ), \\ {{\mathbf {P}}}_{k+1}^{X,i} ={{\mathbf {P}}}_{k+1 |k}^{X,i} -{{\mathbf {K}}}_{k+1}^i {{\mathbf {P}}}_{k+1|k}^{z,i} ({{\mathbf {K}}}_{k+1}^i )^{\mathrm{T}}, \\ {{\mathbf {K}}}_{k+1}^i ={{\mathbf {P}}}_{k+1 |k}^{Xz,i} ({{\mathbf {P}}}_{k+1|k}^{z,i} )^{-1}, \\ \end{array}} \right. \end{aligned}$$
(71)

and the nonlinear integrals

$$\begin{aligned} {\hat{{\mathbf {z}}}}_{k + 1|k}^i= & {} \int {{{\mathbf {h}}}({\mathbf {x}}_{k + 1} )p_{\mathrm{GF}}^i ({{\mathbf {X}}}_{k+1} |{{\mathbf {Z}}}_k )} \mathrm{d}{{\mathbf {X}}}_{k + 1}, \end{aligned}$$
(72)
$$\begin{aligned} {{\mathbf {P}}}_{k + 1|k}^{z,i}= & {} \int {{{\mathbf {h}}}({\mathbf {x}}_{k + 1} ){{\mathbf {h}}}^{\mathrm{T}} ({\mathbf {x}}_{k + 1}) p_{\mathrm{GF}}^i ({{\mathbf {X}}}_{k+1} |{{\mathbf {Z}}}_k )\mathrm{d}{{\mathbf {X}}}_{k + 1}}\nonumber \\&-{\hat{{\mathbf {z}}}}_{k + 1|k}^i ({\hat{{\mathbf {z}}}}_{k + 1|k}^i )^{\mathrm{T}}+{{\mathbf {R}}}_{k + 1} , \end{aligned}$$
(73)
$$\begin{aligned} {{\mathbf {P}}}_{k+1 |k}^{Xz,i}= & {} \int {{{\mathbf {X}}}_{k+1} {{\mathbf {h}}}^{\mathrm{T}} ({\mathbf {x}}_{k+1} )p_{\mathrm{GF}}^i ({{\mathbf {X}}}_{k+1} |{{\mathbf {Z}}}_k )\mathrm{d}{{\mathbf {X}}}_{k+1} }\nonumber \\&-{\hat{{\mathbf {X}}}}_{k+1|k}^i ({\hat{{\mathbf {z}}}}_{k + 1|k}^i )^{\mathrm{T}}. \end{aligned}$$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Pan, Q., Liang, Y. et al. Gaussian sum approximation filter for nonlinear dynamic time-delay system. Nonlinear Dyn 82, 501–517 (2015). https://doi.org/10.1007/s11071-015-2171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2171-5

Keywords

Navigation