Advertisement

Nonlinear Dynamics

, Volume 81, Issue 4, pp 2031–2042 | Cite as

Widespread chaos in rotation of the secondary asteroid in a binary system

  • Mahdi Jafari Nadoushan
  • Nima Assadian
Original Paper

Abstract

The chaotic behavior of the secondary asteroid in a system of binary asteroids due to the asphericity and orbital eccentricity is investigated analytically and numerically. The binary asteroids are modeled with a sphere–ellipsoid model, in which the secondary asteroid is ellipsoid. The first-order resonance is studied for different values of asphericity and eccentricity of the secondary asteroid. The results of the Chirikov method are verified by Poincare section which show good agreement between analytical and numerical methods. It is also shown that asphericity and eccentricity affect the size of resonance regions such that beyond the threshold value, the resonance overlapping occurs and widespread chaos is visible.

Keywords

Binary asteroids Sphere–ellipsoid model Rotational dynamics Asphericity Orbital eccentricity Resonance overlapping Chaotic rotation 

References

  1. 1.
    Bellerose, J., Scheeres, D.J.: Energy and stability in the full two body problem. Celest. Mech. Dyn. Astron. 100, 63–91 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Koon, W., Marsden, J.E., Ross, S.D., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N. Y. Acad. Sci. 1017, 11–38 (2004)CrossRefGoogle Scholar
  3. 3.
    Scheeres, D.J., Ostro, S.J., Werner, R.A., Asphaug, E., Hudson, R.S.: Effects of gravitational interactions on asteroid spin states. Icarus 147, 106–118 (2000)CrossRefGoogle Scholar
  4. 4.
    Scheeres, D.J.: Bounds on rotation periods of disrupted binaries in the full 2-body problem. Celest. Mech. Dyn. Astron. 89(02), 127–140 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fahnestock, E.G., Scheeres, D.J.: Simulation and analysis of the dynamics of binary near-Earth asteroid (66391) 1999 KW4. Icarus 194, 410–435 (2008)CrossRefGoogle Scholar
  6. 6.
    Werner, R.A., Scheeres, D.J.: Mutual potential of homogeneous polyhedra. Celest. Mech. Dyn. Astron. 91, 337–349 (2005)Google Scholar
  7. 7.
    Cuk, M., Nesvorny, D.: Orbital evolution of small binary asteroids. Icarus 207, 732–743 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Steinberg, E., Sari, R.: Binary YORP and evolution of binary asteroids. Astron. J. 141(55), 1–10 (2011)Google Scholar
  9. 9.
    Zhao, Z., Chen, L.: Chemical chaos in enzyme kinetics. Nonlinear Dyn. 57(1–2), 135–142 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75(4), 783–806 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jensen, C.N., True, H.: On a new route to chaos in railway dynamics. Nonlinear Dyn. 13(2), 117–129 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58(1–2), 209–216 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hu, W., Zichen, D., Bo, W., Huajiang, O.: Chaos in an embedded single-walled carbon nanotube. Nonlinear Dyn. 72(1–2), 389–398 (2013)CrossRefGoogle Scholar
  14. 14.
    Zounes, R.S., Rand, R.H.: Global behavior of a nonlinear quasiperiodic Mathieu equation. Nonlinear Dyn. 27(1), 87–105 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Abouhazim, N., Belhaq, M., Rand, R.H.: Two models for the parametric forcing of a nonlinear oscillator. Nonlinear Dyn. 50(1–2), 147–160 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Luo, A.C.: Resonance and stochastic layer in a parametrically excited pendulum. Nonlinear Dyn. 25(4), 355–367 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  18. 18.
    Jose, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  19. 19.
    Sussman, G.J., Wisdom, J., Mayer, M.E.: Structure and Interpretation of Classical Mechanics. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  20. 20.
    Chirikov, B.V.: Universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 263–379 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringSharif University of TechnologyTehranIran

Personalised recommendations