Skip to main content
Log in

A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s anticipation effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering the effect of pedestrian’s anticipation, an extended lattice hydrodynamic model for bidirectional pedestrian flow with passing is proposed in this paper. The stability condition is obtained by the use of linear stability analysis. It is shown that the anticipation term can significantly enlarge the stability region on the phase diagram, and the passing term may reduce the stability region and aggravate the pedestrian jam. Based on nonlinear analysis method, the Burgers, Korteweg–de Vries and modified Korteweg–de Vries equations are derived to describe the shock waves, soliton waves and kink–antikink waves in the stable, metastable and unstable region, respectively. The theoretical results show that jams may be alleviated efficiently by considering the effect of pedestrian’s anticipation. Numerical simulations are carried out in order to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)

    Article  Google Scholar 

  2. Nagatani, T.: The physics of traffic jams. Rep. Prog. Phys. 65, 1331–1386 (2002)

    Article  Google Scholar 

  3. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Selforganized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp. Sci. 39, 1–24 (2005)

    Article  Google Scholar 

  4. Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M.: Pedestrian and Evacuation Dynamic 2005. Springer, Berlin (2007)

    Book  Google Scholar 

  5. Robin, T., Antonini, G., Bierlaire, M., Cruz, J.: Specification, estimation and validation of a pedestrian walking behavior model. Transp. Res. B 43, 36–56 (2009)

    Article  Google Scholar 

  6. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems—From Molecules to Vehicles. Elsevier, Amsterdam (2010)

    Google Scholar 

  7. Helbing, D., Farkas, I.J., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  8. Helbing, D., Farkas, I.J., Vicsek, T.: Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 84, 1240–1243 (2000)

    Article  Google Scholar 

  9. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109 (2007)

    Article  Google Scholar 

  10. Yu, W., Johansson, A.: Modeling crowd turbulence by many-particle simulations. Phys. Rev. E 76, 046105 (2007)

    Article  Google Scholar 

  11. Helbing, D., Molnr, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  12. Johansson, A.: Constant-net-time headway as a key mechanism behind pedestrian flow dynamics. Phys. Rev. E 80, 026120 (2009)

    Article  Google Scholar 

  13. Kuang, H., Chen, T., Li, X.L., Lo, S.M.: A new lattice hydrodynamic model for bidirectional pedestrian flow considering the visual field effect. Nonlinear Dyn. (2013). doi:10.1007/s11071-014-1559-y

  14. Tang, T.Q., Huang, H.J., Shang, H.Y.: A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn. 67(1), 437–443 (2012)

    Article  Google Scholar 

  15. Xia, Y.H., Wong, S.C., Shu, C.W.: Dynamic continuum pedestrian flow model with memory effect. Phys. Rev. E 79, 066113 (2009)

    Article  Google Scholar 

  16. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A 295, 507–525 (2001)

    Article  MATH  Google Scholar 

  17. Ezaki, T., Yanagisawa, D., Nishinari, K.: Pedestrian flow through multiple bottlenecks. Phys. Rev. E 86, 026118 (2012)

    Article  Google Scholar 

  18. Zhang, P., Jian, X.X., Wong, S.C., Choi, K.: Potential field cellular automata model for pedestrian flow. Phys. Rev. E 85, 021119 (2012)

    Article  Google Scholar 

  19. Tian, H.H., He, H.D., Wei, Y.F., Xue, Y., Lu, W.Z.: Lattice hydrodynamic model with bidirectional pedestrian flow. Phys. A 388, 2895–2902 (2009)

    Article  MathSciNet  Google Scholar 

  20. Anderson, R.W.G., Long, A.D., Serre, T.: Phenomenological continuous contact-impact modelling for multibody simulations of pedestrian–vehicle contact interactions based on experimental data. Nonlinear Dyn. 58(1–2), 199–208 (2009)

    Article  MATH  Google Scholar 

  21. McRobie, A.: Nonlinear dynamics of mechanical systems under complicated forcing. Nonlinear Dyn. 43(1–2), 127–136 (2006)

    Article  MATH  Google Scholar 

  22. Ivancevic, V.G., Reid, D.J., Aidman, E.V.: Crowd behavior dynamics: entropic path-integral model. Nonlinear Dyn. 59(1–2), 351–373 (2010)

    Article  MATH  Google Scholar 

  23. Ivancevic, V.G., Reid, D.J.: Turbulence and shock-waves in crowd dynamics. Nonlinear Dyn. 68(1–2), 285–304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, X.L., Chen, Z.Q., Si, G.Y., Hu, X.F., Jiang, Y.Q., Xu, X.S.: The chaotic dynamics of the social behavior selection networks in crowd simulation. Nonlinear Dyn. 64(1–2), 117–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nagatani, T.: Jamming transition in a two-dimensional traffic flow model. Phys. Rev. E 59, 4857–4864 (1999)

    Article  Google Scholar 

  26. Nagatani, T., Nakanishi, K.: Delay effect on phase transitions in traffic dynamics. Phys. Rev. E 57(6), 6415–6421 (1998)

    Article  Google Scholar 

  27. Nakayama, A., Hasebe, A., Sugiyama, Y.: Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model. Phys. Rev. E 71, 036121 (2005)

    Article  Google Scholar 

  28. Nakayama, A., Hasebe, A., Sugiyama, Y.: Instability of pedestrian flow in 2D optimal velocity model with attractive interaction. Comput. Phys. Commun. 177, 162–163 (2007)

    Article  Google Scholar 

  29. Yuen, J.K.K., Lee, E.W.M.: The effect of overtaking behavior on unidirectional pedestrian flow. Saf. Sci. 50, 1704–1714 (2012)

    Article  Google Scholar 

  30. Tang, T.Q., Huang, H.J., Shang, H.Y.: A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn. 67, 437–443 (2012)

    Article  Google Scholar 

  31. Ivancevic, V.G., Reid, D.J., Aidman, E.V.: Crowd behavior dynamics: entropic path-integral model. Nonlinear Dyn. 59, 351–373 (2010)

    Article  MATH  Google Scholar 

  32. Hanseler, F.S., Bierlaire, M., Farooq, B., Muhlematter, T.: A macroscopic loading model for time-varying pedestrian flows in public walking areas. Trans. Res. B 69, 60–80 (2014)

    Article  Google Scholar 

  33. Kerner, B.S., Konhauser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), 2335–2338 (1993)

    Article  Google Scholar 

  34. Kurtze, D.A., Hong, D.C.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52(1), 218–221 (1995)

    Article  MathSciNet  Google Scholar 

  35. Komatsu, T., Sasa, S.: Kink soliton characterizing traffic congestion. Phys. Rev. E 52(5), 5574–5582 (1995)

    Article  Google Scholar 

  36. Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kink–antikink solitons in car-following models. Phys. A 357, 466–476 (2005)

    Article  MathSciNet  Google Scholar 

  37. Ngoduy, D.: Effect of driver behaviours on the formation and dissipation of traffic flow instabilities. Nonlinear Dyn. 69(3), 969–975 (2012)

    Article  MathSciNet  Google Scholar 

  38. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  39. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N.: A new car-following model with consideration of anticipation driving behavior. Nonlinear Dyn. 70(2), 1205–1211 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhu, W.X., Zhang, L.D.: Friction coefficient and radius of curvature effects upon traffic flow on a curved Road. Phys. A 391, 4597–4605 (2012)

    Article  Google Scholar 

  41. Wang, T., Gao, Z.Y., Zhang, J.: Stabilization effect of multiple density difference in the lattice hydrodynamic model. Nonlinear Dyn. 73, 2197–2205 (2013)

    Article  MathSciNet  Google Scholar 

  42. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modeling and experiments. Phys. A 391, 248–263 (2012)

  43. Nagatani, T.: Chaotic jam and phase transition in traffic flow with passing. Phys. Rev. E 60, 1535–1541 (1999)

    Article  Google Scholar 

  44. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their useful comments. This work was partially supported by the National Natural Science Foundation of China (Grant No. 61134004), Zhejiang Province National Science Foundation (Grant No. LY12A010 09) and Zhejiang Province Educational Research Project(Grant No. Y2013 28023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Shi, ZK. A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian’s anticipation effect. Nonlinear Dyn 81, 1247–1262 (2015). https://doi.org/10.1007/s11071-015-2065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2065-6

Keywords

Navigation