Skip to main content

Advertisement

Log in

Optimal biogas production in a model for anaerobic digestion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate a model for anaerobic digestion, a process used to produce biogas. The model, introduced in Weedermann et al. (J Biol Dyn 7:59–85, 2013), consists of differential equations describing the interactions of microbial populations involved in three main stages of anaerobic digestion: acidogenesis, acetogenesis, and methanogenesis. We show that this model predicts that an increased yield in biogas can be achieved in regions where operating parameters push the system into a bistable state. In some regions of bistability, biogas production occurs at only one of the steady states while in others both steady states result in biogas production with one state being more productive than the other. We demonstrate which operating parameters and state variables have the most significant impact on system performance. Surprisingly, the optimal biogas production does not always occur at a steady state where all classes of microorganisms coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Batstone, D., Keller, J., Angelidaki, I., Kalyhuzhnyi, S., Pavlosthathis, S., Rozzi, A., Sanders, W., Siegrist, H., Vavilin, V.: Anaerobic Digestion Model No. 1 (ADM1). IWA Publishing, London (2002)

    Google Scholar 

  2. Benyahia, B., Sari, T., Cherki, B., Harmand, J.: Bifurcation and stability analysis of a two-step model for monitoring anaerobic digestion processes. J. Process Control 22, 1008–1019 (2012)

    Article  Google Scholar 

  3. Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.P.: Dynamic model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75, 440–447 (2001)

    Article  Google Scholar 

  4. Bornhöft, A., Hanke-Rauschenbach, R., Sundmacher, K.: Steady-state analysis of the anaerobic digestion model no. 1 (ADM1). Nonlinear Dyn. 73, 535–549 (2013)

    Article  Google Scholar 

  5. Bryers, J.: Structured modeling of anaerobic digestion of biomass particulates. Biotechnol. Bioeng. 27, 638–649 (1985)

    Article  Google Scholar 

  6. Butler, G., Wolkowicz, G.S.K.: A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985)

    Article  MathSciNet  Google Scholar 

  7. Costello, D., Greenfield, P., Lee, P.: Dynamic modelling of a single-stage high-rate anaerobic reactor—I. Model derivation. Water Res. 25, 847–858 (1991)

    Article  Google Scholar 

  8. Hajji, M., Mazenc, F., Harmand, J.: A mathematical study of syntrophic relationship of a model of anaerobic digestion process. Math. Biosci. Eng. 7, 641–656 (2010)

    Article  MathSciNet  Google Scholar 

  9. Haldane, J.: Enzymes. Longmans Green, London (1930)

    Google Scholar 

  10. Hess, J., Bernard, O.: Design and study of a risk management criterion for an unstable wastewater treatment process. J. Process Control 18, 71–79 (2008)

    Article  Google Scholar 

  11. Hoh, C., Cord-Ruwisch, R.: A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Biotechnol. Bioeng. 51, 597–604 (1996)

    Article  Google Scholar 

  12. Holling, C.: The components of predation as revealed by a study of small mammal predation of the european pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  13. Holling, C.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Article  Google Scholar 

  14. Jeyaseelan, S.: A simple mathematical model for anaerobic digestion process. Water Sci. Technol. 35, 185–191 (1997)

    Article  Google Scholar 

  15. Kleinstreuer, C., Poweigha, T.: Dynamic simulator for anaerobic digestion process. Biotechnol. Bioeng. 24, 1941–1951 (1982)

    Article  Google Scholar 

  16. Kreikenbohm, R., Bohl, E.: A mathematical model of syntrophic cocultures in the chemostat. FEMS Microbiol. Ecol. 38, 131–140 (1986)

    Google Scholar 

  17. Lokshina, L., Vavilin, V., Kettunen, R., Rintala, J., Holliger, C., Nozhevnikova, A.: Evaluation of kinetic coefficients using integrated monod and haldane models for low-temperature acetoclastic methanogenesis. Water Res. 35, 2913–2922 (2001)

    Article  Google Scholar 

  18. Lyberatos, G., Skiadas, I.: Modelling of anaerobic digestion—a review. Global Nest J. 1, 63–76 (1999)

    Google Scholar 

  19. Moletta, R., Verrier, D., Albagnac, G.: Dynamic modelling of anaerobic digestion. Water Res. 20, 427–434 (1986)

    Article  Google Scholar 

  20. Mosey, F.: Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15, 209–232 (1983)

    Google Scholar 

  21. Powell, G.: Equalisation of specific growth rates for syntrophic associations in batch culture. J. Chem. Technol. Biotechnol. 34B, 97–100 (1984)

    Google Scholar 

  22. Powell, G.: Stable coexistence of syntrophic associations in continuous culture. J. Chem. Technol. Biotechnol. 35B, 46–50 (1985)

    Article  Google Scholar 

  23. Sari, T., El Hajji, M., Harmand, J.: The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat. Math. Biosci. Eng. 9, 627–645 (2012)

    Article  MathSciNet  Google Scholar 

  24. Shen, S., Premier, G.C., Guwy, A., Dinsdale, R.: Bifurcation and stability analysis of an anaerobic digestions model. Nonlinear Dyn. 48, 391–408 (2007)

    Article  MathSciNet  Google Scholar 

  25. Siegrist, H., Renggli, D., Gager, W.: Mathematical modelling of anaerobic mesophilic sewage sludge treatment. Water Sci. Technol. 27, 25–36 (1993)

    Article  Google Scholar 

  26. Smith, H., Waltman, P.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  27. Sötermann, S., Ristow, N., Wentzel, M., Ekama, G.: A steady-state model for anaerobic digestion of sewage sludges. Water SA 31, 511–527 (2005)

    Google Scholar 

  28. Weedermann, M.: Analysis of a model for the effects of an external toxin on anaerobic digestion. Math. Biosci. Eng. 9, 447–461 (2012)

    Article  MathSciNet  Google Scholar 

  29. Weedermann, M., Seo, G., Wolkowicz, G.S.K.: Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition. J. Biol. Dyn. 7, 59–85 (2013)

    Article  Google Scholar 

  30. Wett, B., Schön, M.A., Phothilangka, P., Wackerle, F., Insam, H.: Model-based design of an agricultural biogas plant: application of anaerobic digestion model no. 1 for an improved four chamber scheme. Water Sci. Technol. 55, 21–28 (2007)

    Article  Google Scholar 

  31. Wolkowicz, G.S.K., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response function and differential death rates. SIAM J. Appl. Math. 52, 222–233 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of Gail S. K. Wolkowicz was partially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant. The research of Marion Weedermann was supported in part by a grant from Dominican University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Weedermann.

Appendix

Appendix

1.1 Parameter values used for simulations

All of the bifurcation diagrams and numerical simulations in this paper were completed for the two different sets of parameter values given in Tables 5 and 6. Both sets were derived from the ADM1 model, [1]. The first set corresponds to standard values listed in [1] for mesophilic high rate digesters. The second set corresponds to an ADM1-based simulation of a specific installation described in [30]. In [1], all concentrations are given in units of \({\text {kg COD m}}^{-3}\), which is equivalent to \({\text {g COD/L}} \).

Table 5 Derivation of parameter values called ADM1(1) in this paper from standard values given in [1] for high rate digesters under mesophilic conditions
Table 6 Parameter values based on Wett et al. [30] were derived similarly to those in Table 5

The growth of bacteria \(X_{{\text {substrate}}}\) in [1] is generally given by expressions of the form

$$\begin{aligned} g(\alpha ) = Y_{\alpha } k_{m,\alpha } \frac{\alpha }{K_S + \alpha }X_{\alpha }\cdot ({\text {possible Inhibition}}). \end{aligned}$$

In our model, \(Y_{\alpha } k_{m,\alpha } = m_{\alpha }\) with \(\alpha , \beta \in \{S, V, A, H\}\), see also Table 4. Following the derivation of system (2) in our model, \(c_{\alpha } = Y_{\alpha }\) in relationship to the corresponding bacteria group \(\alpha \), and \(\gamma _{\alpha , \beta }\) corresponds to

$$\begin{aligned} \gamma _{\alpha , \beta } = \frac{1-Y_{\alpha }}{Y_{\alpha }} f_{\beta , \alpha } \end{aligned}$$

in ADM1.

The microbial death rates were set to \(d_s = d_v = d_a = d_h = 0.02\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weedermann, M., Wolkowicz, G.S.K. & Sasara, J. Optimal biogas production in a model for anaerobic digestion. Nonlinear Dyn 81, 1097–1112 (2015). https://doi.org/10.1007/s11071-015-2051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2051-z

Keywords

Navigation