Skip to main content
Log in

An ISM-based CNF tracking controller design for uncertain MIMO linear systems with multiple time-delays and external disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a combination of integral sliding mode and composite nonlinear feedback method is proposed for fast and accurate robust tracking and model following of uncertain multiple-input multiple-output linear systems with multiple time-delays and external disturbances. The composite nonlinear feedback technique allows following the reference trajectory within a given accuracy and the invariance property of the integral sliding mode method rejects the disturbances and preserves the stability of the closed-loop system. By using the Lyapunov–Krasovskii functional, the conditions for asymptotic stabilization are obtained in the form of linear matrix inequalities. To improve the tracking performance for different reference amplitudes, a new nonlinear function is included in the control law and is optimally tuned using a modified random search algorithm. The selection of sliding surface and the existence of the sliding mode are two significant issues, which have been addressed. This scheme not only guarantees robustness against time-delays and uncertainties, but also avoids chattering phenomenon and reaching phase. Finally, the simulations are provided to verify the theoretical results. The results show that the proposed method leads to great improvement on the tracking error and the control effort compared to the available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Pai, M.C.: Design of adaptive sliding mode controller for robust tracking and model following. J. Franklin Inst. 347, 1837–1849 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, J.L.: Dynamic output feedback sliding mode control for uncertain mechanical systems without velocity measurements. ISA Trans. 49, 229–234 (2010)

    Article  Google Scholar 

  3. Aghababa, M.P.: No-chatter variable structure control for fractional nonlinear complex systems. Nonlinear Dyn. 73, 2329–2342 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mobayen, S.: Design of LMI-based global sliding mode controller for uncertain nonlinear systems with application to Genesio’s chaotic system. Complexity (2014). doi:10.1002/cplx.21545

    Google Scholar 

  5. Mobayen, S., Yazdanpanah, M.J., Majd, V.J.: A finite-time tracker for nonholonomic systems using recursive singularity-free FTSM. In: 2011 American control Conference, San Francisco, CA, USA, pp. 1720–1725 (2011)

  6. Mobayen, S.: Finite-time robust-tracking and model-following controller for uncertain dynamical systems. J. Vib. Control (2014). doi:10.1177/1077546314538991

    Google Scholar 

  7. Mobayen, S.: Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity (2014). doi:10.1002/cplx.21600

    Google Scholar 

  8. Hamayun, M., Edwards, C., Alwi, H.: Design and analysis of an integral sliding mode fault-tolerant control scheme. IEEE Trans. Autom. Control 57, 1783–1789 (2012)

    Article  MathSciNet  Google Scholar 

  9. Pai, M.C.: Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems. J. Franklin Inst. 351, 2623–2639 (2014)

    Article  MathSciNet  Google Scholar 

  10. Aghababa, M.P.: Synchronization and stabilization of fractional second order nonlinear complex systems. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1411-4

    Google Scholar 

  11. Faieghi, M.R., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72, 301–309 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mobayen, S.: An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1724-3

    MathSciNet  Google Scholar 

  13. Gao, Q., Liu, L., Feng, G., Wang, Y., Qiu, J.: Universal fuzzy integral sliding-mode controllers based on T–S fuzzy models. IEEE Trans. Fuzzy Syst. 22, 350–352 (2014)

    Article  Google Scholar 

  14. Zheng, Z., Sun, W., Chen, H., Yeow, J.T.W.: Integral sliding mode based optimal composite nonlinear feedback control for a class of systems. Control Theory Technol. 12, 139–146 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gao, Z., Liao, X.: Integral sliding mode control for fractional-order systems with mismatched uncertainties. Nonlinear Dyn. 72, 27–35 (2013)

    Article  MathSciNet  Google Scholar 

  16. Chang, J.L.: Dynamic output feedback integral sliding mode control design for uncertain systems. Int. J. Robust Nonlinear Control 22, 841–857 (2012)

    Article  MATH  Google Scholar 

  17. Ting, H.C., Chang, J.L., Chen, Y.P.: Output feedback integral sliding mode controller of time-delay systems with mismatch disturbances. Asian J. Control 14, 85–94 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229–244 (2013)

    Article  MATH  Google Scholar 

  19. Zhao, L.W., Hua, C.C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75, 311–318 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fei, J., Ding, H.: Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn. 70, 1563–1573 (2012)

    Article  MathSciNet  Google Scholar 

  21. Wang, L., Sheng, Y., Liu, X.: A novel adaptive high-order sliding mode control based on integral sliding mode. Int. J. Control Autom. Syst. 12, 459–472 (2014)

    Article  Google Scholar 

  22. Mondal, S., Mahanta, C.: Composite nonlinear feedback based discrete integral sliding mode controller for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 17, 1320–1331 (2011)

    Article  MathSciNet  Google Scholar 

  23. Mobayen, S.: Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback. Nonlinear Dyn. 76, 827–838 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mobayen, S., Majd, V.J.: Robust tracking control method based on composite nonlinear feedback technique for linear systems with time-varying uncertain parameters and disturbances. Nonlinear Dyn. 70, 171–180 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mobayen, S.: Design of CNF-based nonlinear integral sliding surface for matched uncertain linear systems with multiple state-delays. Nonlinear Dyn. 77, 1047–1054 (2014)

    Article  MathSciNet  Google Scholar 

  26. Cheng, G., Peng, K.: Robust composite nonlinear feedback control with application to a servo positioning system. IEEE Trans. Ind. Electron. 54, 1132–1140 (2007)

    Article  Google Scholar 

  27. Lan, W., Thum, C.K., Chen, B.M.: A hard-disk-drive servo system design using composite nonlinear feedback control with optimal nonlinear gain tuning methods. IEEE Trans. Ind. Electron. 57, 1735–1745 (2010)

    Article  Google Scholar 

  28. Peng, K., Chen, B.M., Cheng, G., Lee, T.H.: Modeling and compensation of nonlinearities and friction in a micro hard disk drive servo system with nonlinear feedback control. IEEE Trans. Control Syst. Technol. 13, 708–721 (2005)

    Article  Google Scholar 

  29. Mondal, S., Mahanta, C.: A fast converging robust controller using adaptive second order sliding mode. ISA Trans. 51, 713–721 (2012)

    Article  Google Scholar 

  30. Bandyopadhyay, B., Deepak, F., Park, Y.J.: A robust algorithm against actuator saturation using integral sliding mode and composite nonlinear feedback. In: Proceedings of the 17th World Congress, The International Federation of Automatic Control, COEX, South Korea, pp. 14174–14179 (2008)

  31. Mobayen, S.: Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: an LMI approach. Complexity (2014). doi:10.1002/cplx.21624

    Google Scholar 

  32. Mobayen, S., Majd, V.J., Sojoodi, S.: An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems. Math. Comput. Simul. 85, 1–10 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pai, M.C.: Discrete-time sliding mode control for robust tracking and model following of systems with state and input delays. Nonlinear Dyn. 76, 1769–1779 (2014)

    Article  MathSciNet  Google Scholar 

  34. Wu, H.: Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Trans. Autom. Control 49, 611–616 (2004)

  35. Wu, H.: Adaptive robust control of uncertain dynamical systems with multiple time-varying delays. IET Control Theory Appl. 4, 1775–1784 (2010)

    Article  MathSciNet  Google Scholar 

  36. Pai, M.C.: Robust tracking and model following of uncertain dynamic systems via discrete-time integral sliding mode control. Int. J. Control Autom. Syst. 7, 381–387 (2009)

    Article  Google Scholar 

  37. Hespanha, J.P.: Linear Systems Theory. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  38. Chesi, G.: LMI techniques for optimization over polynomials in control: a survey. IEEE Trans. Autom. Control 55, 2500–2510 (2010)

    Article  MathSciNet  Google Scholar 

  39. Li, T.H.S., Huang, Y.C.: MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Inf. Sci. 180, 4641–4660 (2010)

    Article  MATH  Google Scholar 

  40. Hassanzadeh, I., Mobayen, S.: Controller design for rotary inverted pendulum system using evolutionary algorithms. Math. Probl. Eng. 2011, 1–17 (2011)

    Google Scholar 

  41. Zhang, J., Xia, Y.: Design of static output feedback sliding mode control for uncertain linear systems. IEEE Trans. Ind. Electron. 57, 2061–2070 (2010)

    Article  Google Scholar 

  42. Bandyopadhyay, B., Deepak, F., Kim, K.S.: Sliding Mode Control Using Novel Sliding Surfaces. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  43. Delavari, H., Ranjbar, A.N., Ghaderi, R.: Fractional order control of a coupled tank. Nonlinear Dyn. 61, 383–397 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lim, C.W., Park, Y.J., Moon, S.J.: Robust saturation controller for linear time-invariant system with structured real parameter uncertainties. J. Sound Vib. 294, 1–14 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lingrong, D., Zhixiang, T.: First order dynamic sliding mode control for wheeled mobile robots. Commun. Comput. Inf. Sci. 232, 373–381 (2011)

    Article  Google Scholar 

  46. Falahpoor, M., Ataei, M., Kiyoumarsi, A.: A chattering-free sliding mode control design for uncertain chaotic systems. Chaos Soliton Fractals 42, 1755–1765 (2009)

    Article  MATH  Google Scholar 

  47. Hassanzadeh, I., Harifi, A., Arvani, F.: Design and implementation of an adaptive control for a robot. Am. J. Appl. Sci. 4, 56–59 (2007)

    Article  Google Scholar 

  48. Hassanzadeh, I., Mobayen, S.: PSO-based controller design for rotary inverted pendulum system. J. Appl. Sci. 8, 2907–2912 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Mobayen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majd, V.J., Mobayen, S. An ISM-based CNF tracking controller design for uncertain MIMO linear systems with multiple time-delays and external disturbances. Nonlinear Dyn 80, 591–613 (2015). https://doi.org/10.1007/s11071-015-1892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1892-9

Keywords

Navigation