Skip to main content
Log in

1-Soliton solution of KdV6 equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper applies three forms of integration tools to integrate KdV6 equation that represents a nonholonomic deformation of the well-known KdV equation, which models shallow-water dynamics. The three integration algorithms applied are Kudryashov’s method, extended tanh scheme as well as \(G^{\prime }/G\)-expansion mechanism. These tools lead to solitary waves, shock waves as well as singular periodic solutions to the equation. The corresponding integrability criteria, also known as constraint conditions, naturally emerge from the analysis of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonova, M., Biswas, A.: Adiabatic parameter dynamics of perturbed solitary waves. Commun. Nonlinear Sci. Numer. Simul. 14(3), 734–748 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biswas, A.: Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett. 22(2), 209–210 (2009)

    Article  Google Scholar 

  3. Biswas, A.: Solitary wave solution for KdV equation with power law nonlinearity and time-dependent coefficients. Nonlinear Dyn. 58(1–2), 345–348 (2009)

    Article  MATH  Google Scholar 

  4. Biswas, A., Krishnan, E.V., Suarez, P., Kara, A.H., Kumar, S.: Solitary wave and conservation law of Bona–Chen equation. Indian J. Phys. 87(2), 169–175 (2013)

    Article  Google Scholar 

  5. Biswas, A., Song, M., Triki, H., Kara, A.H., Ahmed, B., Strong, A., Hama, A.: Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual-dispersion. Appl. Math. Inf. Sci. 8(3), 949–957 (2014)

    Article  MathSciNet  Google Scholar 

  6. Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A. 277, 212–218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gupta, R.K., Bansal, A.: Similarity reduction and exact solutions of generalized Bretherton equation with time-dependent coefficients. Nonlinear Dyn. 71(1–2), 1–12 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry reductions, exact group invariant solutions and conservation laws of Benjamin–Bona–Mahoney equation. Appl. Math. Lett. 26(3), 376–381 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kara, A.H., Triki, H., Biswas, A.: Conservation laws of the Bretherton equation. Appl. Math. Inf. Sci. 7(3), 877–8789 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kudryashov, N.A.: Exact soliton solutions of the generalized evolution equation of wave dynamics. J. Appl. Math. Mech. 52, 361–365 (1988)

    Article  MathSciNet  Google Scholar 

  11. Kudryashov, N.A.: On one of methods for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2256 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kudryashov, N.A.: Exact solutions of the generalized Kuramoto–Sivashinsky equation. Phys. Lett. A. 147, 287–291 (1990)

    Article  MathSciNet  Google Scholar 

  13. Kudryashov, N.A.: On types of nonlinear nonintegrable equations with exact solutions. Phys. Lett. A. 155, 269–275 (1991)

  14. Kabir, M.M., Khajeh, A., Abdi Aghdam, E., Yousefi Koma, A.: Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations. Math. Methods Appl. Sci. 34, 213–219 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kupershmidt, B.A.: KdV6: an integrable system. Phys. Lett. A. 372, 2634–2639 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Nonlinear Mech. 31, 329–338 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ma, W.X.: Travelling wave solutions to a seventh order generalized KdV equation. Phys. Lett. A. 180, 221–224 (1993)

    Article  MathSciNet  Google Scholar 

  18. Malfliet, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Malfliet, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. Scr. 54, 569–575 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ryabov, P.N.: Exact solutions of the Kudryashov–Sinelshchikov equation. Appl. Math. Comput. 217, 3585–3590 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Triki, H., Milovic, D., Biswas, A.: Solitary waves and shock waves of the KdV6 equation. Ocean Eng. 73, 119–125 (2013)

    Article  Google Scholar 

  22. Triki, H., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: Topological and non-topological soliton solutions of the Bretherton equation. Proc. Rom. Acad. Ser. A 13(2), 103–108 (2012)

    MathSciNet  Google Scholar 

  23. Triki, H., Kara, A.H., Bhrawy, A.H., Biswas, A.: Soliton solution and conservation law of Gear–Grimshaw model for shallow water waves. Acta Phys. Pol. A 125(5), 1099–1106 (2014)

    Article  Google Scholar 

  24. Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, M.L., Li, X.Z., Zhang, J.L.: The \(G^{\prime }/G\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A. 372(4), 417–423 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wazwaz, A.M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 154(3), 713–723 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yao, Y.Q., Zeng, Y.B.: The bi-Hamiltonian structure and new solutions of KdV6 equation. Lett. Math. Phys. 86, 193–208 (2008)

    Article  MathSciNet  Google Scholar 

  28. Zhang, S., Tong, J.L., Wang, W.: A generalized \(G^{\prime }/G\)-expansion method for the mKdV equation with variable coefficients. Phys. Lett. A. 372(13), 2254–2257 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhang, H.: New application of the \(G^{\prime }/G\)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 14, 3220–3225 (2009)

    Article  MATH  Google Scholar 

  30. Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzazadeh, M., Eslami, M. & Biswas, A. 1-Soliton solution of KdV6 equation. Nonlinear Dyn 80, 387–396 (2015). https://doi.org/10.1007/s11071-014-1876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1876-1

Keywords

Navigation