Skip to main content
Log in

On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The first objective of this paper was to study the Darboux integrability of the polynomial differential system

$$\begin{aligned} \dot{x} = y, \quad \dot{y} = z,\quad \dot{z} = -y - x^2 - x z + 3 y^2 + a, \end{aligned}$$

and the second one is to show that for \(a>0\) sufficiently small this model exhibits two small amplitude periodic solutions that bifurcate from a zero-Hopf equilibrium point localized at the origin of coordinates when \(a=0\). We note that this polynomial differential system introduced by Chen and Wang (Nonlinear Dyn 71:429–436, 2013) is relevant in the sense that it is the first system in \(\mathbb {R}^3\) exhibiting chaotic motion without having equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964)

  2. Baldomá, I., Seara, T.M.: Brakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-Zero singularity. J. Nonlinear Sci. 16, 543–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baldomá, I., Seara, T.M.: The inner equation for genereic analytic unfoldings of the Hopf-Zero singularity. Discret. Contin. Dyn. Syst. Ser. B 10, 232–347 (2008)

    Google Scholar 

  4. Broer, H.W., Vegter, G.: Subordinate silnikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theory Dyn. Syst. 4, 509–525 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Castellanos, V., Llibre, J., Quilantán, I.: Simultaneous periodic orbits bifurcating from two Zero-Hopf equilibria in a tritrophic food chain model. J. Appl. Math. Phys. 1, 31–38 (2013)

    Article  Google Scholar 

  6. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pac. J. Math. 229, 63–117 (2007)

  7. Champneys, A.R., Kirk, V.: The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities. Phys. D Nonlinear Phenom. 195, 77–105 (2004)

  8. Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. math. 2ème série. 2 , 60–96; 123–144; 151–200 (1878)

  9. Guckenheimer, J.: On a codimension two bifurcation. In: Dynamical Systems and Turbulence, Warwick (Coventry, 1979/1980), Lecture Notes in Math., no. 654886 (83j:58088) vol. 898, pp. 99–142. Springer, Berlin (1981)

  10. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42. Springer, Berlin (2002)

    Google Scholar 

  11. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, New York (2006)

    MATH  Google Scholar 

  12. Jouanolou, J.P.: Equations de Pfaff algébriques. In: Lectures Notes in Mathematics, vol. 708. Springer, Berlin (1979)

  13. Llibre, J., Zhang, X.: Darboux theory of integrability in \(\mathbb{C}^n\) taking into account the multiplicity. J. Differ. Equ. 246, 541–551 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Llibre, J., Zhang, X.: Darboux theory of integrability for polynomial vector fields in \(\mathbb{R}^n\) taking into account the multiplicity at infinity. Bull. Sci. Math. 133, 765–778 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Han, M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three-dimensional systems. J. Syst. Sci. Math. Sci. 18, 403–409 (1998)

    MATH  Google Scholar 

  16. Kuznetsov, Yu.A.: Elements of applied bifurcation theory. In: Applied Mathematical Sciences, 3rd ed., vol. 12, Springer, New York (2004)

  17. Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. In: Chernoff, P., Childs, G., Chow, S., Dorroh, J. R., Guckenheimer, J., Howard, L., Kopell, N., Lanford, O.,Mallet-Paret, J., Oster, G., Ruiz, O., Schecter, S., Schmidt., D. and Smale, S. (eds.) Applied Mathematical Sciences, vol. 19.Springer-Verlag, New York (1976)

  18. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging methods in nonlinear dynamical systems. In: Applied Mathematical Sciences. 2nd ed., vol. 59. Springer, New York (2007)

  19. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1991)

    Google Scholar 

  21. Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The first author is partially supported by a MINECO/ FEDER Grant MTM2008-03437, and MTM2013-40998-P, an AGAUR Grant Number 2014SGR-568, an ICREA Academia, the Grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378. The first two authors are also supported by the joint projects FP7-PEOPLE-2012-IRSES numbers 316338 and a CAPES Grant Number 88881.030454/2013-01 from the program CSF-PVE. The third author is supported by Portuguese National Funds through FCT - Fundação para a Ciência e a Tecnologia within the project PEst-OE/EEI/ LA0009/2013 (CAMGSD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regilene D. S. Oliveira.

Appendix: Roots of a cubic polynomial

Appendix: Roots of a cubic polynomial

We recall that the discriminant \(\Delta \) of the polynomial \(ax^3+bx^2+cx+d\) is

$$\begin{aligned} \Delta = 18abcd -4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2. \end{aligned}$$

It is known that

  • If \(\Delta > 0\), then the equation has three distinct real roots.

  • If \(\Delta = 0\), then the equation has a root of multiplicity \(2\) and all its roots are real.

  • If \(\Delta < 0\), then the equation has one real root and two non–real complex conjugate roots.

For more details see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Oliveira, R.D.S. & Valls, C. On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system. Nonlinear Dyn 80, 353–361 (2015). https://doi.org/10.1007/s11071-014-1873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1873-4

Keywords

Mathematics Subject Classification

Navigation