Skip to main content
Log in

EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of parameter estimation for nonlinear Wiener systems in the stochastic framework. Based on the expectation–maximization (EM) algorithm in dealing with the incomplete data, it is applied to estimate the parameters of nonlinear Wiener models considering the randomly missing outputs. By means of the EM approach, the parameters and the missing outputs can be estimated simultaneously. To obtain the noise-free output in the linear subsystem of the Wiener model, the auxiliary model identification idea is adopted here. The simulation results indicate the effectiveness of the proposed approach for identification of a class of nonlinear Wiener models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, C., Tang, T.: Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  Google Scholar 

  2. Rashid, M.T., Frasca, M., et al.: Nonlinear model identification for Artemia population motion. Nonlinear Dyn. 69(4), 2237–2243 (2012)

    Article  MathSciNet  Google Scholar 

  3. Ding, F.: System Identification—New Theory and Methods. Science Press, Beijing (2013)

    Google Scholar 

  4. Ding, F.: System Identification—Performances Analysis for Identification Methods. Science Press, Beijing (2014)

    Google Scholar 

  5. Yin, S., Ding, S., Haghani, A., Hao, H.: Data-driven monitoring for stochastic systems and its application on batch process. Int. J. Syst. Sci. 44(7), 1366–1376 (2013)

    Article  MATH  Google Scholar 

  6. Sun, W., Gao, H., Kaynak, O.: Finite frequency H\(\infty \) control for vehicle active suspension systems. IEEE Trans. Control Syst. Tech. 19(2), 416–422 (2011)

    Article  Google Scholar 

  7. Ding, F., Chen, T.: Identification of Hammerstein nonlinear ARMAX systems. Automatica 41(9), 1479–1489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, D.Q., Ding, F.: Hierarchical least squares estimation algorithm for Hammerstein–Wiener systems. IEEE Signal Process. Lett. 19(12), 825–828 (2012)

    Article  Google Scholar 

  9. Hagenblad, A., Ljung, L., Wills, A.: Maximum likelihood identification of Wiener models. Automatica 44(11), 2697–2705 (2008)

  10. Fan, D., Lo, K.: Identification for disturbed MIMO Wiener systems. Nonlinear Dyn. 55, 31–42 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Janczak, A.: Instrumental variables approach to identification of a class of MIMO Wiener system. Nonlinear Dyn. 48, 275–284 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhou, L., Li, X., Pan, F.: Gradient-based iterative identification for Wiener nonlinear systems with non-uniform sampling. Nonlinear Dyn. 76, 627–634 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wigren, T.: Recursive prediction error identification using the nonlinear Wiener model. Automatica 29(4), 1011–1025 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wigren, T.: Convergence analysis of recursive identification algorithm based on the nonlinear Wiener model. IEEE Trans. Autom. Control 39(11), 2191–2206 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wang, D.Q., Ding, F.: Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011)

    Article  MATH  Google Scholar 

  16. Ding, F., Shi, Y., Chen, T.: Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 56(5), 373–380 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xiong, W.L., Ma, J.X., Ding, R.: An iterative numerical algorithm for a class of Wiener nonlinear system modeling. Appl. Math. Lett. 26(4), 487–493 (2012)

    Article  MathSciNet  Google Scholar 

  18. Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Process. 52(2), 235–258 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ding, F.: State filtering and parameter identification for state space systems with scarce measurements. Signal Process. 104, 369–380 (2014)

    Article  Google Scholar 

  20. Khatibisepehr, S., Huang, B.: Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind. Eng. Chem. Res. 47(22), 8713–8723 (2008)

    Article  Google Scholar 

  21. Jin, X., Wang, S., Huang, B., Forbes, F.: Multiple model based LPV soft sensor development with irregular/missing process output measurement. Control Eng. Pract. 20(2), 165–172 (2012)

    Article  Google Scholar 

  22. Ding, J., Ding, F., Liu, X.P., Liu, G.: Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 56(11), 2677–2683 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ding, F., Ding, J.: Least-squares parameter estimation for systems with irregularly missing data. Int. J. Adapt. Control Signal Process. 24(7), 540–553 (2010)

    MATH  Google Scholar 

  24. Ding, F., Liu, G., Liu, X.P.: Parameter estimation with scarce measurements. Automatica 47(8), 1646–1655 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhu, Y., Telkamp, H., Wang, J., Fu, Q.: System identification using slow and irregular output samples. J. Process Control 19(1), 58–67 (2009)

    Article  MATH  Google Scholar 

  26. Isaksson, A.J.: Identification of ARX-models subject to missing data. IEEE Trans. Autom. Control 38(5), 813–819 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wallin, R., Isaksson, A.J., Ljung, L.: An iterative method for identification of ARX models from incomplete data. In: Proceedings of the 39th IEEE Conference Decision Control 1, pp. 203–208 (2000)

  28. Gopaluni, R.B.: A particle filter approach to identification of nonlinear process under missing observations. Can. J. Chem. Eng. 86(6), 1081–1092 (2008)

    Article  Google Scholar 

  29. Xie, L., Yang, H.Z., Huang, B.: FIR model identification of multirate processes with random delays using EM algorithm. AIChE J. 59(11), 4124–4132 (2013)

    Article  Google Scholar 

  30. Deng, J., Huang, B.: Identification of nonlinear parameter varying systems with missing output data. AIChE J. 58(11), 3454–3467 (2012)

    Article  Google Scholar 

  31. Xiong, W., Yang, X., Huang, B., Xu, B.: Multiple-model based linear parameter varying time-delay system identification with missing output data using an expectation–maximization algorithm. Ind. Eng. Chem. Res. 53, 11074–11083 (2014)

  32. Yang, X., Gao, H.: Multiple model approach to linear parameter varying time-delay system identification with EM algorithm. J. Frankl. Inst. 351(12), 5565–5581 (2014)

    Article  MathSciNet  Google Scholar 

  33. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  34. Wu, J.: On the convergence properties of the EM algorithm. Ann. Stat. 11(1), 95–103 (1983)

    Article  MATH  Google Scholar 

  35. Ding, F., Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 40(10), 1739–1748 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ding, F.: Hierarchical parameter estimation algorithms for multivariable systems using measurement information. Inf. Sci. 277, 396–405 (2014)

    Article  Google Scholar 

  37. Ding, F., Wang, Y.J., Ding, J.: Recursive least squares parameter estimation algorithms for systems with colored noise using the filtering technique and the auxiliary model. Digit. Signal Process. (2015). http://dx.doi.org/10.1016/j.dsp.2014.10.005

  38. Hu, Y.B.: Iterative and recursive least squares estimation algorithms for moving average systems. Simul. Model. Practice Theory 34, 12–19 (2013)

    Article  Google Scholar 

  39. Ding, J., Fan, C.X., Lin, J.X.: Auxiliary model based parameter estimation for dual-rate output error systems with colored noise. Appl. Math. Model. 37(6), 4051–4058 (2013)

    Article  MathSciNet  Google Scholar 

  40. Ding, J., Lin, J.X.: Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique. Circuits Syst. Signal Process. 33(5), 1439–1449 (2014)

    Article  Google Scholar 

  41. Liu, Y.J., Ding, F., Shi, Y.: An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–970 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ding, F.: Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  Google Scholar 

  43. Wang, C., Tang, T.: Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems. Appl. Math. Lett. 29, 36–41 (2014)

  44. Hu, Y.B., Liu, B.L., Zhou, Q., Yang, C.: Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises. Circuits Syst. Signal Process. 33(2), 655–664 (2014)

    Article  MathSciNet  Google Scholar 

  45. Hu, Y.B., Liu, B.L., Zhou, Q.: A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems. Appl. Math. Comput. 247, 218–224 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Xiong or Xianqiang Yang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 21206053, 21276111, 61273131), the PAPD of Jiangsu Higher Education Institutions and the 111 Project (B12018).

Appendix: Detailed derivation of Eqs.(18) and (19)

Appendix: Detailed derivation of Eqs.(18) and (19)

The Q-function in Eq. (17) can be further written as

$$\begin{aligned}&Q(\varTheta |\varTheta ^s)=\sum _{t=m_1}^{m_\alpha }\left\{ -\frac{1}{2}\log (2\pi \sigma ^{2})-\frac{1}{2\sigma ^{2}}((\sigma ^s)^{2}\right. \nonumber \\&\quad \left. +(\varphi ^{T}(t)\vartheta -\varphi ^{T}(t)\vartheta ^s)^T(\varphi ^{T}(t)\vartheta -\varphi ^{T}(t)\vartheta ^s)\right\} \nonumber \\&\quad +\sum _{t=o_1}^{o_\beta }\left\{ -\frac{1}{2}\log (2\pi \sigma ^{2})-\frac{1}{2\sigma ^{2}}(y_t-\varphi ^T(t)\vartheta )^T\right. \nonumber \\&\quad \left. (y_t-\varphi ^T(t)\vartheta )\right\} +\log C. \end{aligned}$$
(26)

Taking the gradient of \(Q(\varTheta |\varTheta ^s)\) with respect to \(\vartheta \) and setting it to zero,

$$\begin{aligned} \frac{\partial Q(\varTheta |\varTheta ^s)}{\partial \vartheta }&=\sum _{t=m_1}^{m_\alpha }\left\{ -\frac{1}{2\sigma ^{2}}(2 \varphi (t)\varphi ^{T}(t)\vartheta \right. \nonumber \\&\quad \left. -2\varphi (t)\varphi ^{T}(t)\vartheta ^s)\right\} \nonumber \\&\quad +\sum _{t=o_1}^{o_\beta }\left\{ -\frac{1}{2\sigma ^{2}}(2\varphi (t)\varphi ^{T}(t)\vartheta \right. \nonumber \\&\quad \left. -2\varphi (t)y_t)\right\} \nonumber \\&=0 \end{aligned}$$
(27)

Through keeping the terms that not related with \(\vartheta \) at the right side, Eq. (27) can be written as

$$\begin{aligned}&\sum _{t=m_1}^{m_\alpha } \varphi (t)\varphi ^{T}(t)\vartheta +\sum _{t=o_1}^{o_\beta } \varphi (t)\varphi ^{T}(t)\vartheta \nonumber \\&\quad = \sum _{t=m_1}^{m_\alpha } \varphi (t)\varphi ^{T}(t)\vartheta ^s+\sum _{t=o_1}^{o_\beta }\varphi _t y_t \end{aligned}$$
(28)

Then, the new estimate of parameter \(\vartheta \) can be obtained as:

$$\begin{aligned} \vartheta ^{s+1}=\frac{\sum _{t=m_1}^{m_\alpha }\varphi (t)\varphi ^{T}(t)\vartheta ^s+\sum _{t=o_1}^{o_\beta }\varphi (t)y(t)}{\sum _{t=1}^{N}\varphi (t)\varphi ^{T}(t)} \end{aligned}$$
(29)

Taking the gradient of \(Q(\varTheta |\varTheta ^s)\) with respect to \(\sigma ^2\) and setting it to zero,

$$\begin{aligned} \frac{\partial Q(\varTheta |\varTheta ^s)}{\partial \sigma ^2}&=\sum _{t=m_1}^{m_\alpha }\left\{ -\frac{1}{2\sigma ^{2}} + \frac{1}{2\sigma ^4} \left[ (\sigma ^s)^{2}\right. \right. \nonumber \\&\quad \left. \left. +(\varphi ^{T}(t)\vartheta -\varphi ^{T}(t)\vartheta ^s)^{2}\right] \right\} \nonumber \\&\quad +\,\sum _{t=o_1}^{o_\beta } \left\{ -\frac{1}{2\sigma ^{2}} + \frac{1}{2\sigma ^4}(y_t-\varphi ^T(t)\vartheta )^2 \right\} \nonumber \\&=0. \end{aligned}$$
(30)

Through keeping the two terms including \(\sigma ^2\) at the left side, the Eq. (30) can be written as:

$$\begin{aligned}&\sum _{t=m_1}^{m_\alpha } \sigma ^2 + \sum _{t=o_1}^{o_\beta } \sigma ^2=N \cdot \sigma ^2\nonumber \\&\quad =\sum _{t=m_1}^{m_\alpha } \left\{ (\sigma ^s)^{2}+(\varphi ^{T}(t)\vartheta -\varphi ^{T}(t)\vartheta ^s)^{2}\right\} \nonumber \\&\qquad +\sum _{t=o_1}^{o_\beta } (y_t-\varphi ^T(t)\vartheta )^2 \end{aligned}$$
(31)

Then, the estimation of parameter \(\sigma ^2\) can be obtained as:

$$\begin{aligned} (\sigma ^{2})^{s+1}=\frac{\sum _{t=m_1}^{m_\alpha } ( (\sigma ^s)^2+(\varphi ^T(t)\vartheta ^{s+1}-\varphi ^T(t)\vartheta ^s )^2 )+ \sum _{t=o_1}^{o_\beta } ( y_t-\varphi ^T(t)\vartheta ^{s+1})^2 }{N}\end{aligned}$$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Yang, X., Ke, L. et al. EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data. Nonlinear Dyn 80, 329–339 (2015). https://doi.org/10.1007/s11071-014-1871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1871-6

Keywords

Navigation