Skip to main content
Log in

Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study proposes a new car-following model that considers the effects of two-sided lateral gaps on a road without lane discipline. In particular, a car-following model is proposed to capture the impacts from the lateral gaps of the leading vehicles on both sides of the following vehicle. Linear stability analysis of the proposed model is performed using the perturbation method to obtain the stability condition. Nonlinear analysis is performed using the reductive perturbation method to derive the modified Korteweg de Vries equation to describe the density wave propagation. Results from numerical experiments illustrate that the proposed car-following model has larger stable region compared to a car-following model that considers the effect of lateral gap on only one side. Also, it is able to more rapidly dissipate the effect of a perturbation such as a sudden stimulus from a leading vehicle. In addition, the findings of this study provide insights in analyzing system performance of a non-lane-discipline road system in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6(2), 165–184 (1958)

    Article  MathSciNet  Google Scholar 

  2. Kurt, E., Busse, F.H., Pesch, W.: Hydromagnetic convection in a rotating annulus with an azimuthal magnetic field. Theor. Comput. Fluid Dyn. 18(2–4), 251–263 (2004)

    Article  MATH  Google Scholar 

  3. Kurt, E., Pesch, W., Busse, F.H.: Pattern formation in the rotating cylindrical annulus with an azimuthal magnetic field at low Prandtl numbers. J. Vib. Control 13(9–10), 1321–1330 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traffic flow modelling. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 215(4), 283–303 (2001)

    Article  Google Scholar 

  5. Darbha, S., Rajagopal, K.R., Tyagi, V.: A review of mathematical models for the flow of traffic and some recent results. Nonlinear Anal. 69, 950–970 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ossen, S., Hoogendoorn, S.P.: Heterogeneity in car-following behavior: theory and empirics. Transp. Res. Part C Emerg. Technol. 19(2), 182–195 (2011)

    Article  Google Scholar 

  7. Wilson, R.E., Ward, J.A.: Car-following models: fifty years of linear stability analysis-a mathematical perspective. Transp. Plann. Technol. 34(1), 3–18 (2011)

    Article  Google Scholar 

  8. Li, Y., Sun, D.: Microscopic car-following model for the traffic flow: the state of the art. J. Control Theor. Appl. 10(2), 133–143 (2012)

    Article  Google Scholar 

  9. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamics model of traffic congestion and numerical simulation. Phys. Rev. E 1(51), 1035–1042 (1995)

    Article  Google Scholar 

  10. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  11. Treiber, M., Hennecke, A., Helbing, D.: Derivation, properties and simulation of a gas-kinetic-based nonlocal traffic model. Phys. Rev. E 59, 239–253 (1999)

    Article  Google Scholar 

  12. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101–017105 (2001)

    Article  Google Scholar 

  13. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. Part B 36, 405–419 (2002)

    Article  Google Scholar 

  14. Zhao, X.M., Gao, Z.Y.: A new car-following model: full velocity and acceleration difference model. Eur. Phys. J. B 47, 145–150 (2005)

    Article  Google Scholar 

  15. Wang, T., Gao, Z.Y., Zhao, X.M.: Multiple velocity difference model and its stability analysis. Acta Phys. Sin. 55, 634–638 (2006)

    Google Scholar 

  16. Xie, D.F., Gao, Z.Y., Zhao, X.M.: Stabilization of traffic flow based on the multiple information of preceding cars. Commun. Comput. Phys. 3(4), 899–912 (2008)

    MathSciNet  Google Scholar 

  17. Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66(1–2), 15–28 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tang, T., Li, C., Wu, Y., Huang, H.: Impact of the honk effect on the stability of traffic flow. Phys. A Stat. Mech. Appl. 390(20), 3362–3368 (2011)

  19. Tang, T., Wu, Y., Caccetta, L., Huang, H.: A new car-following model with consideration of roadside memorial. Phys. Lett. A 375(44), 3845–3850 (2011)

  20. Tang, T., Wang, Y., Yang, X., Wu, Y.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Zhu, H., Cen, M., Li, Y., Li, R., Sun, D.: On the stability analysis of microscopic traffic car-following model: a case study. Nonlinear Dyn. 74(1–2), 335–343 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tang, T., Li, J., Huang, H., Yang, X.: A car-following model with real-time road conditions and numerical tests. Measurement 48, 63–76 (2014)

    Article  Google Scholar 

  23. Tang, T., Shi, W., Shang, H., Wang, Y.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76(4), 2017–2023 (2014)

    Article  Google Scholar 

  24. Chandra, S., Kumar, U.: Effect of lane width on capacity under mixed traffic conditions in India. J. Transp. Eng. 129(2), 155–160 (2003)

    Article  Google Scholar 

  25. Jin, S., Wang, D., Tao, P., Li, P.: Non-lane-based full velocity difference car following model. Phys. A Stat. Mech. Appl. 389(21), 4654–4662 (2010)

    Article  Google Scholar 

  26. Gunay, B.: Car following theory with lateral discomfort. Transp. Res. Part B 41, 722–735 (2007)

    Article  Google Scholar 

  27. Monteil, J., Billot, R., Sau, J., EI Faouzi, N.E.: Linear and weakly nonlinear stability analyses of cooperative car-following models. IEEE Trans. Intell. Transp. Syst. (2014). doi:10.1109/TITS.2014.2308435

  28. Kurtz, D.A., Hong, D.C.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52(1), 218–221 (1995)

    Article  Google Scholar 

  29. Komatsu, T.S., Sasa, S.: Kink soliton characterizing traffic congestion. Phys. Rev. E 52(5), 5574–5582 (1995)

    Article  Google Scholar 

  30. Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60(6), 6395–6401 (1999)

    Article  Google Scholar 

  31. Li, Z.P., Liu, Y.C., Liu, F.Q.: A dynamical model with next-nearest-neighbor interaction in relative velocity. Int. J. Mod. Phys. C 18, 819–832 (2007)

    Article  MATH  Google Scholar 

  32. Ge, H.X., Cheng, R.J., Dai, S.Q.: KdV and kink-antikink solitons in car-following models. Phys. A 357, 466–476 (2005)

    Article  MathSciNet  Google Scholar 

  33. Lei, Y., Shi, Z.K.: Nonlinear analysis of an extended traffic flow model in ITS environment. Chaos Solitons Fractals 36, 550–558 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yu, L., Shi, Z.K., Zhou, B.C.: Kink-antikink density wave of an extended car-following model in a cooperative driving system. Commun. Nonlinear Sci. Numer. Simul. 13, 2167–2176 (2008)

    Article  Google Scholar 

  35. Kurtze, D.A.: Solitons and kinks in a general car-following model. Phys. Rev. E 88(3), 032804–032815 (2013)

    Article  Google Scholar 

  36. Lv, F., Zhu, H., Ge, H.: TDGL and mKdV equations for car-following model considering driver’s anticipation. Nonlinear Dyn. 77(4), 1–6 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thanks go to the support from the project by the National Natural Science Foundation of China (Grant Nos. 61304197, 61304205), the Scientific and Technological Talents Project of Chongqing (Grant No. cstc2014kjrc-qnrc30002) and the US Department of Transportation through the NEXTRANS Center, the USDOT Region 5 University Transportation Center. The authors are solely responsible for the contents of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, L., Peeta, S. et al. Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps. Nonlinear Dyn 80, 227–238 (2015). https://doi.org/10.1007/s11071-014-1863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1863-6

Keywords

Navigation