Skip to main content
Log in

Finite-time stabilizing a fractional-order chaotic financial system with market confidence

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel integer-order chaotic financial system is proposed by considering market confidence into a three-dimensional financial system. A four-dimensional fractional-order financial system is presented by introducing fractional calculus into the new integer-order system. The 0–1 test algorithm is employed to identify chaos. A robust controller is designed to stabilize the fractional-order chaotic system in a finite time. This finite-time control scheme can keep the original structure of system as much as possible and can be applied to stabilizing other chaotic systems including dynamic economic systems. Numerical simulations validate the main results of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, D.: Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface control technique. Nonlinear Dyn. 68, 235–243 (2012)

    Article  MATH  Google Scholar 

  2. Li, D.: Adaptive neural network control for unified chaotic systems with dead-zone input. J. Vib. Control. (2013). doi:10.1177/1077546313513055

  3. Liu, Y., Zheng, Y.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57, 431–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dadras, S., Momeni, H.: Control of a fractional-order economical system via sliding mode. Physica A 389, 2434–2442 (2010)

    Article  Google Scholar 

  5. Hu, C., Jiang, H.: Stabilization and synchronization of unified chaotic system via impulsive control. Abstr. Appl. Anal. 2014, 369842 (2014)

    MathSciNet  Google Scholar 

  6. Hao, L., Yang, G.: Fault tolerant control for a class of uncertain chaotic systems with actuator saturation. Nonlinear Dyn. 73, 2133–2147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Joshua, A.: Comparative analysis of the impact of mergers and acquisitions on financial efficiency of banks in Nigeria. J. Account. Tax. 3, 1–6 (2011)

    Google Scholar 

  8. Umaru, I.: Isolating the “Pure” Effect of the 2004/2005 bank consolidation policy on performance of banks in Nigeria, using the chow test (2000–2010). Account. Financ. Res. 2, 47–59 (2013)

    Google Scholar 

  9. Dinica, M.: The real options attached to an investment project. Economia Manag. 14, 511–518 (2011)

    Google Scholar 

  10. Xin, B., Chen, T., Liu, Y.: Complexity evolvement of a chaotic fractional-order financial system. Acta Phys. Sin. 60, 048901 (2011)

    Google Scholar 

  11. Xin, B., Ma, J., Gao, Q.: The complexity of an investment competition dynamical model with imperfect information in a security market. Chaos Solitons Fract. 42, 2425–2438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, D., Li, H.: Theory and Method of the Nonlinear Economics. Sichuan University Press, Chengdu (1993)

    Google Scholar 

  13. Ma, J., Chen, Y.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl. Math. Mech. 22, 1240–1251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, J., Chen, Y.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Appl. Math. Mech. 22, 1375–1382 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, W.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fract. 36, 1305–1314 (2008)

    Article  Google Scholar 

  17. Wang, Z., Huang, X., Shen, H.: Control of an uncertain fractional order economic system via adaptive sliding mode. Neurocomputing 83, 83–88 (2012)

    Article  Google Scholar 

  18. Mircea, G., Neamtu, M., Bundau, O., Opris, D.: Uncertain and stochastic financial models with multiple delays. Int. J. Bifurcat. Chaos 22, 1250131 (2012)

    Article  MathSciNet  Google Scholar 

  19. Xin, B., Chen, T., Ma, J.: Neimark–Sacker bifurcation in a discrete-time financial system. Discret. Dyn. Nat. Soc. 2010, 405639 (2010)

  20. Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system. Chaos Solitons Fract. 45, 1048–1057 (2012)

    Article  Google Scholar 

  21. Xin, B., Li, Y.: 0–1 Test for chaos in a fractional order financial system with investment incentive. Abstr. Appl. Anal. 2013, 876298 (2013)

    MathSciNet  Google Scholar 

  22. Earle, T.: Trust, confidence, and the 2008 global financial crisis. Risk Anal. 29, 785–792 (2009)

    Article  Google Scholar 

  23. Hiltzik, N.: The New Deal: A Modern History. Simon & Schuster, New York (2011)

    Google Scholar 

  24. Chow, K., Denning, K., Ferris, S., Noronha, G.: Long-term and short-term price memory in the stock market. Econ. Lett. 49, 287–293 (1995)

    Article  MATH  Google Scholar 

  25. Schotman, P., Tschernig, R.: Long memory and the term structure of risk. J Financ. Econom. 6, 459–495 (2008)

    Article  Google Scholar 

  26. Hwai-Chung, H., Yang, S., Liu, F.: Evaluating quantile reserve for equity-linked insurance in a stochastic volatility model: long vs. short memory. Astin Bull. 40, 669–698 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Cao, G.: Time-varying effects of changes in the interest rate and the RMB exchange rate on the stock market of China: evidence from the long-memory TVP-VAR model. Emerg. Mark. Financ. Trade 48, 230–248 (2012)

    Article  Google Scholar 

  28. Doyle, J., Chen, C.: A multidimensional classification of market anomalies: evidence from 76 price indices. J Int. Financ. Mark. Inst. Money 22, 1237–1257 (2012)

    Article  Google Scholar 

  29. Meade, N., Maier, M.: Evidence of long memory in short-term interest rates. J. Forecast. 22, 553–568 (2003)

    Article  Google Scholar 

  30. Duan, J., Jacobs, K.: Is long memory necessary? An empirical investigation of nonnegative interest rate processes. J. Empir. Financ. 15, 567–581 (2008)

    Article  Google Scholar 

  31. Coakley, J., Fuertes, A.: A no-linear analysis of excess foreign exchange returns. Manch. Sch. 69, 623–642 (2001)

    Article  Google Scholar 

  32. Liu, F., Sercu, P.: The forward puzzle: the roles of exchange rate regime and base currency strength. World Econ. 32, 1055–1074 (2009)

    Article  Google Scholar 

  33. Fibich, G., Gavious, A., Lowengart, O.: The dynamics of price elasticity of demand in the presence of reference price effects. J Acad. Mark. Sci. 33, 66–78 (2005)

    Article  Google Scholar 

  34. Zumbach, G.: Volatility conditional on price trends. Quant. Financ. 10, 431–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Alvarez-Ramirez, J., Alvarez, J., Rodriguez, E.: Short-term predictability of crude oil markets: a detrended fluctuation analysis approach. Energy Econ. 30, 2645–2656 (2008)

    Article  Google Scholar 

  36. Choi, K., Hammoudeh, S.: Long memory in oil and refined products markets. Energy J. 30, 97–116 (2009)

    Article  Google Scholar 

  37. Liu, H., Chen, Y.: A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: the impacts of extreme weather. Econ. Model. 35, 840–855 (2013)

    Article  Google Scholar 

  38. Wang, Y., Wu, C.: Efficiency of crude oil futures markets: new evidence from multifractal detrending moving average analysis. Comput. Econ. 42, 393–414 (2013)

    Article  Google Scholar 

  39. Yalama, A., Celik, S.: Real or spurious long memory characteristics of volatility: empirical evidence from an emerging market. Econ. Model. 30, 67–72 (2013)

    Article  Google Scholar 

  40. Xin, B., Chen, T., Liu, Y.: Synchronization of chaotic fractional-order WINDMI systems via linear state error feedback control. Math. Probl. Eng. 2010, 859685 (2010)

    Article  MathSciNet  Google Scholar 

  41. Xin, B., Chen, T., Liu, Y.: Projective synchronization of chaotic fractional-order energy resources demand-supply systems via linear control. Commun. Nonlinear Sci. Num. Sim. 16, 4479–4486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, X., Chen, W.: Nested meshes for numerical approximation of space fractional differential equations. Eur. Phys. J. 193, 221–228 (2011)

    Google Scholar 

  43. Li, X., Wang, S., Zhao, M.: Two methods to solve a fractional single phase moving boundary problem. Cent. Eur. J. Phys. 11, 1387–1391 (2013)

    Google Scholar 

  44. Chen, S., Jiang, X.: Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus. Physica A 391, 3865–3874 (2012)

    Article  MathSciNet  Google Scholar 

  45. Jiang, X., Qi, H.: Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative. J. Phys. A-Math. Theor. 45, 485101 (2012)

    Article  MathSciNet  Google Scholar 

  46. Yu, B., Jiang, X.: A fractional anomalous diffusion model and numerical simulation for sodium ion transport in the intestinal wall. Adv. Math. Phys. 2013, 479634 (2013)

    Article  MathSciNet  Google Scholar 

  47. Deng, W., Du, S., Wu, Y.: High order finite difference WENO schemes for fractional differential equations. Appl. Math. Lett. 26, 362–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Deng, W., Hesthaven, J.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM. Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, L., Deng, W.: Jacobian-predictor-corrector approach for fractional differential equations. Adv. Comput. Math. 40, 137–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998)

    Google Scholar 

  51. Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  52. Petráš, I.: A note on the fractional-order Volta’s system. Commun. Nonlinear Sci. Num. Sim 15, 384–393 (2010)

    Article  MATH  Google Scholar 

  53. Gottwald, G., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8, 129–145 (2009)

  54. Falconer, I., Gottwald, G., Melbourne, I., Wormnes, K.: Application of the 0–1 test for chaos to experimental data. SIAM J. Appl. Dyn. Syst. 6, 395–402 (2007)

  55. Devi, S., Singh, S., Sharma, A.: Deterministic dynamics of the magnetosphere: results of the 0–1 test. Nonlinear Proc. Geophys. 20, 11–18 (2013)

    Article  Google Scholar 

  56. Bernardini, D., Rega, G., Litak, G., Syta, A.: Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test. P. I. Mech. Eng. K-J. Mul. 227, 17–22 (2013)

    Google Scholar 

  57. Sun, K., Liu, X., Zhu, C.: The 0–1 test algorithm for chaos and its applications. Chin. Phys. B 11, 110510 (2010)

    Article  Google Scholar 

  58. Yuan, L., Yang, Q.: A proof for the existence of chaos in diffusively coupled map lattices with open boundary conditions. Discret. Dyn. Nat. Soc. 2011, 174376 (2011)

    Article  MathSciNet  Google Scholar 

  59. Webel, K.: Chaos in German stock returns—new evidence from the 0–1 test. Econ. Lett. 115, 487–489 (2012)

    Article  Google Scholar 

  60. Zachilas, L., Psarianos, I.: Examining the chaotic behavior in dynamical systems by means of the 0–1 test. J. Appl. Math. 2012, 681296 (2012)

    Article  MathSciNet  Google Scholar 

  61. Xin, B., Li, Y.: Bifurcation and chaos in a price game of irrigation water in a coastal irrigation district. Discret. Dyn. Nat. Soc. 2013, 408904 (2013)

    Article  MathSciNet  Google Scholar 

  62. Vahedi, S., Noorani, M.: Analysis of a new quadratic 3D chaotic attractor. Abstr. Appl. Anal. 2013, 540769 (2013)

    Article  MathSciNet  Google Scholar 

  63. Krese, B., Govekar, E.: Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos. Nonlinear Dyn. 67, 2101–2109 (2012)

    Article  Google Scholar 

  64. Kim, Y.: Identification of dynamical states in stimulated Izhikevich neuron models by using a 0–1 test. J. Korean Phys. Soc. 57, 1363–1368 (2010)

    Article  Google Scholar 

  65. Fraser, A., Swinney, H.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  66. Aghababa, M.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012)

  67. Aghababa, M.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 021010 (2012)

    Article  Google Scholar 

  68. Hu, J., Zhao, L.: Finite-time synchronizing fractional-order chaotic volta system with nonidentical orders. Math. Probl. Eng. 2011, 264136 (2011)

    MathSciNet  Google Scholar 

  69. Zhao, L., Hu, J., Bao, Z., Zhang, G., Xu, C., Zhang, S.: A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Phys. Sin. 10, 100507 (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported partly by Excellent Young Scientist Foundation of Shandong Province (Grant No. BS2011SF018), National Social Science Foundation of China (Grant No. 12BJY103), and National Natural Science Foundation of China (Grant No. 71272148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baogui Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, B., Zhang, J. Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn 79, 1399–1409 (2015). https://doi.org/10.1007/s11071-014-1749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1749-7

Keywords

Navigation