Skip to main content
Log in

A wavelet-based approach for stability analysis of periodic delay-differential systems with discrete delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a semi-analytical wavelet-based approach for stability analysis of time-periodic delay-differential equations (DDEs) with a single discrete time delay. By using the autocorrelation functions of compactly supported Daubechies scaling functions, the DDE is discretized to a set of algebraic equations, employing the wavelet collocation method. The state transition matrix over a single period is constructed to determine the stability based on Floquet theory. Stability charts for the one-degree-of-freedom milling model and time-delayed Mathieu equation are obtained, illustrating both the efficiency and accuracy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific & Technical, New York (1989)

    MATH  Google Scholar 

  2. Balachandran, B.: Nonlinear dynamics of milling processes. Philos. Trans. Math. Phys. Eng. Sci. 359(1781), 793–819 (2001)

  3. Wiercigroch, M., Budak, E.: Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 359(1781), 663–693 (2001)

    Article  MATH  Google Scholar 

  4. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Altintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 53(2), 619–642 (2004)

    Article  Google Scholar 

  6. Altintas, Y., Budak, E.: Analytical prediction of stability lobes in milling. CIRP Ann. Manuf. Technol. 44(1), 357–362 (1995)

    Article  Google Scholar 

  7. Budak, E., Altintas, Y.: Analytical prediction of chatter stability in milling—part I: general formulation. J. Dyn. Syst. Meas. Control Trans. ASME 120(1), 22–30 (1998)

    Article  Google Scholar 

  8. Insperger, T., Stépán, G.: Semi-discretization method for delayed systems. Int. J. Numer. Methods Eng. 55(5), 503–518 (2002)

    Article  MATH  Google Scholar 

  9. Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Numer. Methods Eng. 61(1), 117–141 (2004)

    Article  MATH  Google Scholar 

  10. Insperger, T., Stépán, G., Turi, J.: On the higher-order semi-discretizations for periodic delayed systems. J. Sound Vib. 313(1–2), 334–341 (2008)

    Article  Google Scholar 

  11. Long, X.H., Balachandran, B.: Stability analysis for milling process. Nonlinear Dyn. 49(3), 349–359 (2007)

    Article  MATH  Google Scholar 

  12. Long, X.H., Balachandran, B., Mann, B.P.: Dynamics of milling processes with variable time delays. Nonlinear Dyn. 47(1–3), 49–63 (2007)

    MATH  Google Scholar 

  13. Insperger, T., Stépán, G.: Semi-discretization for Time-Delay Systems: Stability and Engineering Applications. Springer, New York (2011)

    Book  Google Scholar 

  14. Bayly, P.V., Halley, J.E., Mann, B.P., Davies, M.A.: Stability of interrupted cutting by temporal finite element analysis. J. Manuf. Sci. Eng. Trans. ASME 125(2), 220–225 (2003)

  15. Breda, D., Maset, S., Vermiglio, R.: Computing the characteristic roots for delay differential equations. IMA J. Num. Anal. 24(1), 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Breda, D., Maset, S., Vermiglio, A.R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27(2), 482–495 (2006)

  17. Ding, Y., Zhu, L., Zhang, X., Ding, H.: A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf. 50(5), 502–509 (2010)

    Article  Google Scholar 

  18. Quo, Q., Sun, Y., Jiang, Y.: On the accurate calculation of milling stability limits using third-order full-discretization method. Int. J. Mach. Tools Manuf. 62, 61–66 (2012)

    Article  Google Scholar 

  19. Liu, Y., Zhang, D., Wu, B.: An efficient full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf. 63, 44–48 (2012)

    Article  Google Scholar 

  20. Niu, J., Ding, Y., Zhu, L., Ding, H.: Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn. 76(1), 289–304 (2014)

    Article  MathSciNet  Google Scholar 

  21. Olgac, N., Sipahi, R.: A unique methodology for chatter stability mapping in simultaneous machining. J. Manuf. Sci. Eng. Trans. ASME 127(4), 791–800 (2005)

    Article  Google Scholar 

  22. Olgac, N., Sipahi, R.: Dynamics and stability of variable-pitch milling. J. Vib. Control 13(7), 1031–1043 (2007)

    Article  MATH  Google Scholar 

  23. Ding, Y., Zhu, L., Zhang, X., Ding, H.: Numerical integration method for prediction of milling stability. J. Manuf. Sci. Eng. Trans. ASME 133(3), 031005 (2011). doi:10.1115/1.4004136

    Article  Google Scholar 

  24. Li, M., Zhang, G., Huang, Y.: Complete discretization scheme for milling stability prediction. Nonlinear Dyn. 71(1–2), 187–199 (2013)

    Article  MathSciNet  Google Scholar 

  25. Butcher, E.A., Ma, H., Bueler, E., Averina, V., Szabo, Z.: Stability of linear time-periodic delay-differential equations via Chebyshev polynomials. Int. J. Numer. Methods Eng. 59(7), 895–922 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Butcher, E.A., Bobrenkov, O.A., Bueler, E., Nindujarla, P.: Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J. Comput. Nonlinear Dyn. 4(3), 031003 (2009)

    Article  Google Scholar 

  27. Ding, Y., Zhu, L., Zhang, X., Ding, H.: Stability analysis of milling via the differential quadrature method. J. Manuf. Sci. Eng. Trans. ASME 135(4), 044502 (2013)

    Article  Google Scholar 

  28. Suh, C.S., Khurjekar, P.P., Yang, B.: Characterisation and identification of dynamic instability in milling operation. Mech. Syst. Signal Process. 16(5), 853–872 (2002)

  29. Choi, T., Shin, Y.C.: On-line chatter detection using wavelet-based parameter estimation. J. Manuf. Sci. Eng. Trans. ASME 125(1), 21–28 (2003)

    Article  MathSciNet  Google Scholar 

  30. Yoon, M.C., Chin, D.H.: Cutting force monitoring in the endmilling operation for chatter detection. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 219(6), 455–465 (2005)

    Article  Google Scholar 

  31. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)

    MATH  Google Scholar 

  32. Bertoluzza, S., Naldi, G.: A wavelet collocation method for the numerical solution of partial differential equations. Appl. Comput. Harmon. Anal. 3(1), 1–9 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5(1), 49–68 (1989)

  34. Zhou, J., Zhou, Y.H., Liew, K.M.: Wavelet-based method for stability analysis of vibration control systems with multiple delays. Comput. Mech. 47(2), 161–170 (2011)

  35. Beylkin, G., Saito, N.: Wavelets, their autocorrelation functions, and multiresolution representations of signals. In: Proceedings of the SPIE, pp. 39–50. The International Society for Optical Engineering (1993)

  36. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  37. Farkas, M.: Periodic Motions. Springer, New York (1994)

    Book  MATH  Google Scholar 

  38. Insperger, T., Stépán, G.: Stability chart for the delayed Mathieu equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 458(2024), 1989–1998 (2002)

    Article  MATH  Google Scholar 

  39. Insperger, T., Stépán, G.: Stability of the damped Mathieu equation with time delay. J. Dyn. Syst. Meas. Control Trans. ASME 125(2), 166–171 (2003)

    Article  Google Scholar 

  40. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, Burlington (2009)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 51305263 and 51325502). The last author was supported by the National Key Basic Research Program (Grant No. 2011CB706804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ding.

Appendices

Appendix A: Multiresolution analysis and Daubechies scaling function [40]

A multiresolution analysis is a sequence \(\{V_J\}, J\in {\mathbb {Z}}\) of subspaces of \(L^{2}(\mathbb {R})\) with the following properties:

$$\begin{aligned}&V_J \subset V_{J+1},\quad \forall J\in \mathbb {Z} \end{aligned}$$
(31)
$$\begin{aligned}&\overline{\bigcup _{J\in {\mathbb {Z}}} {V_J}} =L^{2}({\mathbb {R}}), \quad \hbox {and}\quad \bigcap _{J\in {\mathbb {Z}}} {V_J} =\{0\}\end{aligned}$$
(32)
$$\begin{aligned}&f(x)\in V_J \Leftrightarrow f(2x)\in V_{J+1},\quad \forall J\in {\mathbb {Z}} \end{aligned}$$
(33)
$$\begin{aligned}&f(x)\in V_J \Leftrightarrow f(x-2^{-J}k)\in V_J,\quad \forall k\in \mathbb {Z} \end{aligned}$$
(34)

The Daubechies scaling function, \({\varphi } (t)\), with \(M\) vanishing moments, is constructed by applying the iterative procedure [40]

$$\begin{aligned} {\varphi } (t)=\sqrt{2}\sum _{k=0}^{2M-1} {h_k {\varphi } (2t-k)} \end{aligned}$$
(35)

where \(h_k\) are the Daubechies filter coefficients (Table 2). The set \(\{ {\phi (t-k),k\in {\mathbb {Z}}}\}\) is an orthonormal basis for \(V_0 \). The support of the scaling function \({\varphi } (t)\) is \([0,L]\), and \(L=2M-1\), where the support of \({\varphi } (t)\) means an interval \(P\) such that \({\varphi } (t)=0\), for \(t \notin P\).

The corresponding Daubechies wavelet function \(\psi (t)\) can be expressed as

$$\begin{aligned} \psi (t)=\sqrt{2}\sum _{k=0}^{2M-1} {(-1)^{k+1}h_k {\varphi } (2t+k-1)} \end{aligned}$$
(36)

The Daubechies wavelet function has the following property, i.e.,

$$\begin{aligned} \int _{-\infty }^{+\infty } {t^{k}\psi (t)\hbox {d}t}=0,\quad \hbox {for}\; k=0,\ldots ,M-1 \end{aligned}$$
(37)

where it means \(\psi (t)\) has its first \(M\) moments vanish.

Table 2 Coefficients \(h_k\) for Daubechies scaling function with \(M\) vanishing moments [40]

Appendix B: Formulation of the single DOF milling system

The governing equation of the single DOF milling system can be formulated as [9]

$$\begin{aligned} {\ddot{x}}(t)+2\zeta \omega _n \dot{x}(t)+\omega _\mathrm{n}^2 x(t){=}-\frac{a_p h(t)}{m_t }({x(t){-}x(t-T)}) \end{aligned}$$
(38)

where \(\zeta \) is the relative damping, \(\omega _\mathrm{n}\) is the angular natural frequency, \(m_t\) is the modal mass of the cutter, \(a_p\) is the depth of cut, and \(h(t)\) is the cutting force coefficient.

By denoting that \(y(t)=m_t\frac{\hbox {d}}{\hbox {d}t}x(t)+m_t \zeta \omega _n x(t)\) and \({\mathbf{x}}(t)=[x(t) \quad y(t)]^\mathrm{T}\), Eq. (38) can be represented as the state-space form, i.e.,

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}{\mathbf{x}}(t)=\mathbf{A}(t)\mathbf{x}(t)+\mathbf{B}(t)\mathbf{x}(t-T) \end{aligned}$$
(39)

where

$$\begin{aligned} \mathbf{A}(t)&= \left[ {{\begin{array}{ll} -\zeta \omega _n &{} \frac{1}{m_t} \\ {m_t \left( {\zeta \omega _n } \right) ^{2}-m_t \omega _n^2 -a_p h(t)}&{} {-\zeta \omega _n} \\ \end{array} }} \right] , \nonumber \\ \mathbf{B}(t)&= \left[ {{\begin{array}{ll} 0 &{} 0 \\ a_p h(t) &{} 0 \\ \end{array}}} \right] \end{aligned}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zhu, L. & Ding, H. A wavelet-based approach for stability analysis of periodic delay-differential systems with discrete delay. Nonlinear Dyn 79, 1049–1059 (2015). https://doi.org/10.1007/s11071-014-1722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1722-5

Keywords

Navigation