Skip to main content

Advertisement

Log in

Port condensation of Volterra transfer functions with cross-products

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Port-based dynamic models are frequently used in the description of physical devices from an energy perspective. Port-based models group pairs of input and output variables into ports. A port in a physical model describes a process for energy transformation into, or out of, the system modeled. In complex multi-port models, it is desirable to eliminate some unused ports to decrease model complexity or to protect proprietary internal design details. Condensation is a procedure to remove unused, zero input, model ports from a model while retaining all other ports with full model input–output accuracy for those retained ports. The condensation of port-based linear models represented as transfer function matrices was treated in Radcliffe and Motato (J Dyn Syst Meas Control 131:021003–0210010, 2009). The condensation of port-based nonlinear models without cross-products and represented as Volterra models was developed in Motato and Radcliffe (Proceedings of the ASME dynamic systems control conference, Hollywood, USA, 2009). This work extends the condensation process for port-based Volterra dynamic models including cross-products of output port variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Radcliffe, C., Motato, E.: Networked assembly of mechatronic linear physical system models. J. Dyn. Syst. Meas. Control 131, 021003–0210010 (2009)

    Article  Google Scholar 

  2. Motato, E., Radcliffe, C.: A condensation procedure for nonlinear port-based models. In: Proceedings of the ASME Dynamic Systems Control Conference, Hollywood, USA (2009)

  3. Hales, M., Rosenber, R.: Structured modeling of mechatronics components using multiport templates. In: Proceedings of the ASME International Mechanical Engineering Conference Exposition, Orlando (2000)

  4. Karnopp, Dean C., Margolis, D., Rosenberg, R.: System Dynamics: Modeling and Simulation of Mechatronic Systems. Wiley, New York (2000)

    Google Scholar 

  5. Antoulas, A.C., Sorencen, D.C., Gugercin, S.: A survey of model reduction methods for large-scale system. Contemp. Math. 280, 193–219 (2001)

    Article  Google Scholar 

  6. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Wiley, New York (2005)

    Google Scholar 

  7. Antoulas, A.C.: Approximation of Large Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  8. Kershen, G., Golinval, J.C., Vakakis, A., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41, 147–169 (2005)

    Article  Google Scholar 

  9. Astolfi, A.: Model reduction by moment matching for linear and nonlinear systems. IEEE Trans. Autom. Control 55(10), 2321–2336 (2010)

    Article  MathSciNet  Google Scholar 

  10. Motato, E., Radcliffe, C.J.: Obtaining frequency-domain Volterra models from port based ordinary differential equations. J. Dyn. Syst. Meas. Control 134, 041002–041009 (2012)

    Article  Google Scholar 

  11. Motato, E., Radcliffe, C.: Modular assembly of Volterra models of nonlinear physical systems. J. Dyn. Syst. Meas. Control 133, 054501–054507 (2011)

    Article  Google Scholar 

  12. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, London (1980)

    MATH  Google Scholar 

  13. Rugh, W., Baltimore: Nonlinear System Theory. The Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  14. Worden, K.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. IoP, London (2001)

    Book  Google Scholar 

  15. Bikerlund, Y., Hanssen, A.: On the estimation of nonlinear Volterra models in offshore engineering. Int. J. Offshore Polar Eng. 13(1), 180–187 (2003)

  16. Wang, T., Brazil, T.: The estimation of Volterra transfer functions with applications to RF power amplifier behavior evaluation for CDMA digital communication. IEEE Microw. Symp. Digest 1, 425–-428 (2000)

    Google Scholar 

  17. Draganescu, E., Ercuta, A.: Identification of nonlinearities in anaelastic polycrystalline material using Volterra–Fourier transform. J. Optoelectron. Adv. Mater. 5(1), 301–304 (2003)

    Google Scholar 

  18. Boaghe, O., Billings, S.: Sub-harmonic oscillation modeling and MISO Volterra series. IEEE Trans. Circuits Syst. 50(7), 877–884 (2003)

    Article  MathSciNet  Google Scholar 

  19. Lang, Z.Q., Billings, S.A., Yue, R., Li, J.: Output frequency response function of nonlinear Volterra systems. Automatica 43, 805–816 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chatterjee, A., Vyas, N.S.: Non-linear parameter estimation with Volterra series using the method of recursive iteration through harmonic probing. J. Sound Vib. Syst. 268, 657–678 (2003)

    Article  Google Scholar 

  21. Cheng, C.M., Peng, Z.K., Zhang, W.M., Meng, G.: Wavelet basis expansion-based Volterra kernel function identification through multilevel excitations. Nonlinear Dyn. 76(2), 985–999 (2014)

    Article  MathSciNet  Google Scholar 

  22. Peng, Z.K., Lang, Z.Q., Billings, S.A.: Linear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency response functions. Mech. Syst. Signal Process. 21(8), 3108–3122 (2007)

    Article  Google Scholar 

  23. Peng, Z.K., Lang, Z.Q., Billings, S.A.: Nonlinear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency response functions. Mech. Syst. Signal Process. 22(7), 1582–1594 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Motato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motato, E., Radcliffe, C.J. Port condensation of Volterra transfer functions with cross-products. Nonlinear Dyn 79, 593–605 (2015). https://doi.org/10.1007/s11071-014-1688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1688-3

Keywords

Navigation