Skip to main content
Log in

Stability and bifurcation analysis of a reaction–diffusion equation with distributed delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamics of a general reaction–diffusion equation with distributed delay are considered. The effects of the weak kernel and the strong kernel on the dynamics of the system are both investigated. By analyzing the characteristic equations in detail and taking the average delay as a bifurcation parameter, the stability of the constant equilibrium and the existence of Hopf bifurcations are obtained. The absolute stability and the conditional stability can be explicitly determined by the coefficients of the linearized system. For the case of the strong kernel, the average delay may induce the stability switches, but it is not able to occur for the case of the weak kernel. The algorithm for determining the direction and stability of the bifurcating periodic solutions is derived. Finally, the obtained theoretical results are applied to several single-species models, and the numerical simulations are illustrated to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen, D.S., Rosenblat, S.: Multispecies interactions with hereditary effects and spatial diffusion. J. Math. Biol. 7, 231–241 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yi, F., Wei, J., Shi, J.: Bifurcation and spatio-temporal patterns in a diffusive homogeneous predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang, J., Shi, J., Wei, J.: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. J. Differ. Equ. 251, 1276–1304 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zuo, W., Wei, J.: Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model. Dyn. Partial Differ. Equ. 8, 363–384 (2011)

    MATH  MathSciNet  Google Scholar 

  5. Volterra, V.: Remarques sur la note de M. Régnier et lle Lambin (Étude d’un casd’antagonisme microbien). C. R. Acad. Sci. 199, 1684–1686 (1934)

  6. Gourley, S.A., Ruan, S.: Dynamics of the diffusive Nicholson’s Blowflies equation with distributed delay. Proc. R. Soc. Edinb. Sect. A 130A, 1275–1291 (2000)

    Article  MathSciNet  Google Scholar 

  7. Britton, N.F.: Spatial structures and periodic traveling waved in an integro-differential reaction–diffusion population model. SIAM J. Appl. Math. 50, 1663–1688 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Peng, Y., Song, Y.: Existence of traveling wave solutions for a reaction–diffusive equation with distributed delays. Nonlinear Anal. 67, 2415–2423 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ruan, S., Wolkowicz, G.S.: Bifurcation analysis of a Chemostat model with a distribute delay. J. Math. Anal. Appl. 204, 786–812 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395–418 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Webb, G.F.: Autonomous nonlinear functional differential equations and nonlinear semigroups. J. Math. Anal. Appl. 46, 1–12 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Webb, G.F.: Asymptotic stability for abstract functional differential equations. Proc. Am. Math. Soc. 54, 225–230 (1976)

    Article  MATH  Google Scholar 

  13. Fitzgibbon, W.E.: Semilinear functional differential equations in Banach space. J. Differ. Equ. 29, 1–14 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rankin, S.M.: Existence and asymptotic behavior of a functional differential equation in Banach space. J. Math. Anal. Appl. 88, 531–542 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lin, X., So, J.W.-H., Wu, J.: Centre manifolds for partial differential equations with delays. Proc. R. Soc. Edinb. Sect. A 122A, 237–254 (1992)

    Article  MathSciNet  Google Scholar 

  16. Hale, J.K., Ladeira, L.A.C.: Differentiability with respect to delays for a retarded reaction–diffusion equation. Nonlinear Anal. 20, 793–801 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delay. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Appl. Math. Sci., vol. 119. Springer, New York (1996)

  19. Martin, R.H., Smith, H.L.: Reaction–diffusion systems with time delays: monotonicity, invariance, comparison, and convergence. J. Reine Angew. Math. 413, 1–35 (1991)

    MATH  MathSciNet  Google Scholar 

  20. Busenberg, S., Huang, W.: Stability and Hopf bifurcation for a population delay model with diffusion effects. J. Differ. Equ. 124, 80–107 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yan, X., Li, W.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23, 1413–1431 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Su, Y., Wei, J., Shi, J.: Hopf bifurcation in a diffusive Logistic equation with mixed delayed and instantaneous density dependence. J. Dyn. Differ. Equ. 24, 897–925 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. So, J.W.-H., Yang, Y.: Dirichlet problem for the diffusive Nicholson’s Blowflies equation. J. Differ. Equ. 150, 317–348 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. So, J.W.-H., Wu, J., Yang, Y.: Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson’s Blowflies equation. Appl. Math. Comput. 111, 33–51 (2000)

  26. Su, Y., Wei, J., Shi, J.: Bifurcation analysis in a delayed diffusive Nicholson’s Blowflies equation. Nonlinear Anal. Real World Appl. 11, 1692–1703 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, Y., Ding, X.: Dynamics of numerical discretization in a delayed diffusive Nicholson’s Blowflies equation. Appl. Math. Comput. 222, 589–603 (2013)

    Article  MathSciNet  Google Scholar 

  28. So, J.W.-H., Zou, X.: Traveling waves for the diffusive Nicholson’s blowflies equation. Appl. Math. Comput. 122, 385–392 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. MacDonald, N.: Time Lags in Biological Models, Lecture Notes in Biomathematics, vol. 27. Springer, Berlin (1978)

  30. Blyuss, K.B., Kyrychko, Y.N.: Stability and bifurcations in an epidemic model with varying immunity period. Bull. Math. Biol. 72, 490–505 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Crauste, F.: Stability and Hopf bifurcation for a first-order delay differential equation with distributed delay. In: Atay, F.M. (ed.) Complex Time-Delay Systems: Theory and Applications, pp. 263–296. Springer, Berlin (2010)

    Google Scholar 

  32. Campbell, S.A., Jessop, R.: Approximating the stability region for a differential equation with a distributed delay. Math. Model. Nat. Phenom. 4, 1–27 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Han, Y., Song, Y.: Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays. Nonlinear Dyn. 69, 357–370 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Song, Y., Han, Y., Peng, Y.: Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays. Neuroncomputing 122, 442–452 (2013)

    Article  Google Scholar 

  35. Ruan, S., Arino, O., et al.: Delay Differential Equations and Applications, pp. 477–517. Springer, Berlin (2006)

  36. Krise, S., Choudhury, S.R.: Bifurcations and chaos in a predator–prey model with delay and a laser-diode system with self-sustained pulsations. Chaos Solitons Fractals 16, 59–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zhang, C., Yan, X., Cui, G.: Hopf bifurcations in a predator–prey system with a discrete and a distributed delay. Nonlinear Anal. Real World Appl. 11, 4141–4153 (2010)

  38. Hu, R., Yuan, Y.: Spatially nonhomogeneous equilibrium in a reaction–diffusion system with distributed delay. J. Differ. Equ. 250, 2779–2806 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 863–874 (2003)

  40. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  41. Weng, P., Xu, Z.: Wavefronts for a global reaction–diffusion population model with infinite distributed delay. J. Math. Anal. Appl. 345, 522–534 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author is supported by the National Natural Science Foundation of China (Nos. 11326119,11401584) and Shandong Provincial Natural Science Foundation, China (No. ZR2013AQ023), and the Fundamental Research Funds for the Central Universities (No. 14CX02220A); the second author is supported by the State Key Program of National Natural Science of China (No. 11032009) and the Program for New Century Excellent Talents in University (NCET-11-0385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Song.

Appendices

Appendix 1

Proof of Lemma 2

Differentiating the two sides of (7) with respect to \(\tau \) leads to

$$\begin{aligned} \frac{\mathrm{d}\lambda }{\mathrm{d}\tau }=\frac{2\tau \lambda ^2+\lambda \left( 2\tau \left( \frac{\mathrm{d}n^2}{l^2} -a\right) +2\right) +2\left( \frac{\mathrm{d}n^2}{l^2}-a-b\right) }{3\lambda ^2\tau ^3+2\lambda \tau ^3 \left( \frac{\mathrm{d}n^2}{l^2}-a+\frac{2}{\tau }\right) +2\tau ^2\left( \frac{\mathrm{d}n^2}{l^2}-a\right) +\tau }. \end{aligned}$$

For convenience, denote \(\tau =\tau _{1n}\) or \(\tau =\tau _{2n}\) by \(\tau ^*\), by (8), and then we have

$$\begin{aligned} Re\left( \left. \frac{\mathrm{d}\lambda }{\mathrm{d}\tau }\right| _{\tau =\tau ^*}\right)&= Re\left( \frac{-2\tau ^*\omega _n^2+i\omega _n\left( 2\tau ^*\left( \frac{\mathrm{d}n^2}{l^2} -a\right) +2\right) +2\left( \frac{\mathrm{d}n^2}{l^2}-a-b\right) }{-3\omega _n^2{\tau ^*}^3+ 2i\omega _n{\tau ^*}^3\left( \frac{\mathrm{d}n^2}{l^2}-a+\frac{2}{\tau ^*}\right) +2{\tau ^*}^2 \left( \frac{\mathrm{d}n^2}{l^2}-a\right) +\tau ^*}\right) \\&= Re\left( \frac{-\tau ^*\omega _n^2+i\omega _n\left( \tau ^*\left( \frac{\mathrm{d}n^2}{l^2}-a \right) +1\right) +\frac{\mathrm{d}n^2}{l^2}-a-b}{{\tau ^*}^3\left( -\omega _n^2+i\omega _n \left( \frac{\mathrm{d}n^2}{l^2}-a+\frac{2}{\tau ^*}\right) \right) }\right) \\&= \frac{1}{\tilde{\varDelta }}\left( \omega _n^2\tau ^*-\left( \frac{\mathrm{d}n^2}{l^2}-a-b \right) +\left( \tau ^*\left( \frac{\mathrm{d}n^2}{l^2}-a\right) +1\right) \left( \frac{\mathrm{d}n^2}{l^2} -a+\frac{2}{\tau ^*}\right) \right) \\&= \frac{1}{\tau \tilde{\varDelta }}\left( 4\tau ^*(\frac{\mathrm{d}n^2}{l^2}-a)+b\tau ^* +(\frac{\mathrm{d}n^2}{l^2}-a)^2{\tau ^*}^2+3\right) \\&= \frac{1}{\tau ^*\tilde{\varDelta }}\left( 1-\left( \frac{\mathrm{d}n^2}{l^2}-a\right) ^2(\tau ^*)^2 \right) ,~~\text {by}~~(8)_n. \end{aligned}$$

where \(\tilde{\varDelta }={\tau ^*}^3\left( \omega _n^2+\left( \frac{\mathrm{d}n^2}{l^2}-a +\frac{2}{\tau ^*}\right) ^2\right) \). Since \(\tau _{1n}\tau _{2n}=\frac{1}{\left( \frac{\mathrm{d}n^2}{l^2}-a\right) ^2}\), and \(\tau _{1n}<\tau _{2n}\), we have

$$\begin{aligned} \tau _{1n}<\frac{1}{|\frac{\mathrm{d}n^2}{l^2}-a|},~\tau _{2n}>\frac{1}{|\frac{\mathrm{d}n^2}{l^2}-a|}. \end{aligned}$$

Thus, \(\left. Re(\frac{\mathrm{d}\lambda }{\mathrm{d}\tau })\right| _{\tau =\tau _{1n}}>0,~\left. Re(\frac{\mathrm{d}\lambda }{\mathrm{d}\tau })\right| _{\tau =\tau _{2n}}<0\).

Appendix 2

We first transform System (1) into the following operator equation:

$$\begin{aligned} \frac{\hbox {d}u(t)}{\hbox {d}t}=Au_t+G(u_t,\alpha ), \end{aligned}$$
(17)

where \(u_t=u(t+\theta ),~\theta \in (-\infty ,0],\,A\) and \(G\) are defined by

$$\begin{aligned} A\phi (\theta )= {\left\{ \begin{array}{ll} \frac{\hbox {d}\phi (\theta )}{\hbox {d}\theta },&{}\theta \in (-\infty ,0),\\ \left( -\frac{\mathrm{d}n^2}{l^2}+a\right) \phi (0)&{}\\ \quad +\,b\int _{-\infty }^0f(-s)\phi (s)\hbox {d}s,&{}\theta =0. \end{array}\right. } \end{aligned}$$
$$\begin{aligned}&G(\phi ,\alpha )= {\left\{ \begin{array}{ll}0,&{}\theta \in (-\infty ,0),\\ F''_{11}\frac{\phi ^2(0)}{2}+F''_{12}\phi (0)\int _{-\infty }^0f(-s)\phi (s)\hbox {d}s +\frac{F''_{22}}{2}\left( \int _{-\infty }^0f(-s)\phi (s)\hbox {d}s\right) ^2\\ ~~+\frac{F'''_{111}}{6}\phi ^3(0)+\frac{F'''_{112}}{2}\phi ^2(0) \left( \int _{-\infty }^0f(-s)\phi (s)\hbox {d}s\right) \\ ~~+\frac{F'''_{122}}{2}\phi (0)\left( \int _{-\infty }^0f(-s)\phi (s)\hbox {d}s\right) ^2\\ ~~+\frac{F'''_{222}}{6}\left( \int _{-\infty }^0f(-s)\phi (s)\hbox {d}s\right) ^3+O(4), &{}\theta =0,\end{array}\right. } \end{aligned}$$
(18)

where \(a=F'_1(k,k),~b=F'_2(k,k)\) are as previously shown, \(F''_{11},F''_{12},F''_{22},F'''_{111},F'''_{112},etc\) denote the high-order partial derivations at \((k, k)\).

The adjoint operator \(A^*\) of \(A\) is defined as

$$\begin{aligned}&A^*(\psi (s))\\&\quad ={\left\{ \begin{array}{ll} -\frac{\hbox {d}\psi (s)}{\hbox {d}s},&{}s\in (0,+\infty ),\\ \left( -\frac{\mathrm{d}n^2}{l^2}+a\right) \psi (0)&{}\\ \quad +b\int _{-\infty }^0f(-s)\psi (-s)\hbox {d}s,&{}s=0. \end{array}\right. } \end{aligned}$$

Define the bilinear pairing

$$\begin{aligned} \ll \psi ,\phi \gg&= \bar{\psi }(0)\phi (0)-b\nonumber \\&\times \int _{-\infty }^0\int _0^\theta \bar{\psi }(\xi -\theta )f(-\theta )\phi (\xi )\hbox {d}\xi d\theta .\nonumber \\ \end{aligned}$$
(19)

It can be verified that \(q(\theta )=e^{i\omega \theta },~\theta \in (-\infty ,0]\) is an eigenvector of \(A\) corresponding to \(i\omega \). \(q^*(s)=re^{i\omega s},~s\in [0,+\infty )\) is an eigenvector of \(A^*\) corresponding to \(-i\omega \), where

$$\begin{aligned} \bar{r}=\left( 1-b\int _{-\infty }^0e^{i\omega \theta }f(-\theta )\theta \hbox {d}\theta \right) ^{-1}. \end{aligned}$$

By (19) and \(Aq(0)=i\omega q(0),~A^*q^*(0)=-i\omega q^*(0)\), we can compute that

$$\begin{aligned} \ll q^*,q\gg =1,~\ll q^*,\bar{q}\gg =0. \end{aligned}$$

And \(\langle \cos {\frac{nx}{l}},\cos {\frac{nx}{l}}\rangle =1,~n=0\) and \(\langle \cos {\frac{nx}{l}},\cos {\frac{nx}{l}}\rangle =\frac{1}{2},~n=1,2,\ldots .\)

Then, the center subspace of linear equation of (17) with \(\alpha =0\) is given by \(P_{CN}\fancyscript{C}\), where

$$\begin{aligned} P_{CN}\fancyscript{C}=\left\{ \left( q(\theta )z+\bar{q}(\theta )\bar{z}\right) \cos {\frac{nx}{l}},~z\in C\right\} . \end{aligned}$$

Following the notation as Hassard et al. [40], the solution \(u_t\) of Eq. (17) with \(\alpha =0\) is as follows:

$$\begin{aligned} u_t=\left( q(\theta )z+\bar{q}(\theta )\bar{z}\right) \cos {\frac{nx}{l}}+W(\theta ), \end{aligned}$$
(20)

where

$$\begin{aligned} W(\theta )&= W(z,\bar{z},\theta )=W_{20}(\theta )\frac{z^2}{2}+W_{11}(\theta ) z\bar{z}\nonumber \\&\quad +\,W_{02}(\theta )\frac{\bar{z}^2}{2}+\ldots . \end{aligned}$$
(21)

On the center manifold \(\fancyscript{C}_0\), the local coordinates \(z\) in the direction of \(q^*\) satisfy

$$\begin{aligned} \dot{z}&= i\omega z + \left\langle q^*,G\left( (q(0)z+\bar{q}(0)\bar{z})\cos {\frac{nx}{l}} \right. \right. \nonumber \\&\left. \left. +W(0),0\right) \right\rangle \nonumber \\&\triangleq i\omega z+g(z,\bar{z}), \end{aligned}$$
(22)

where

$$\begin{aligned} g(z,\bar{z})&= \overline{q^*}(0)\left\langle G\left( (q(0)z+\bar{q}(0)\bar{z})\cos {\frac{nx}{l}}\right. \right. \nonumber \\&\left. \left. +W(0),0\right) , \cos {\frac{nx}{l}}\right\rangle \nonumber \\&= \frac{\bar{r}}{l\pi }\int _0^{l\pi }G\left( (q(0)z+\bar{q}(0)\bar{z})\cos {\frac{nx}{l}}\right. \nonumber \\&\quad \left. +\,W(0),0\right) \cos {\frac{nx}{l}}\hbox {d}x\nonumber \\&= g_{20}\frac{z^2}{2}\!+\!g_{11}z\bar{z}\!+\!g_{02}\frac{\bar{z}^2}{2}\!+\!g_{21}\frac{z^2 \bar{z}}{2}\!+\ldots .\qquad \end{aligned}$$
(23)

Noticing that

$$\begin{aligned}&\int _{-\infty }^0e^{i\omega s}f(-s)\hbox {d}s = \frac{1}{(i\omega \tau ^*+1)^2},\\&\int _{-\infty }^0e^{-i\omega s}f(-s)\hbox {d}s = \frac{1}{(1-i\omega \tau ^*)^2}, \end{aligned}$$

and combining (18), (20)–(23), we have,

$$\begin{aligned} g_{20}&= \frac{\bar{r}}{l\pi }\int _0^{l\pi }\left( F''_{11}+\frac{2F''_{12}}{(1 +i\omega \tau ^*)^2}\right. \\&\quad \left. +\,\frac{F''_{22}}{(1+i\omega \tau ^*)^4}\right) \cos ^3{\frac{nx}{l}}\hbox {d}x\\&= {\left\{ \begin{array}{ll} 0,\quad n=1,2,\ldots ,&{}\\ \bar{r}\left( F''_{11}+\frac{2F''_{12}}{(1+i\omega \tau ^*)^2}+\frac{F''_{22}}{(1 +i\omega \tau ^*)^4}\right) ,&{}n=0. \end{array}\right. }\\ g_{11}&= \frac{\bar{r}}{l\pi }\int _0^{l\pi }\left( F''_{11}+\frac{F''_{12}(2-2 \omega ^2{\tau ^*}^2)+F''_{22}}{(1+{\tau ^*}^2\omega ^2)^2}\right) \\&\times \cos ^3{\frac{nx}{l}}\hbox {d}x\\&= {\left\{ \begin{array}{ll} 0,\quad n=1,2,\ldots ,&{}\\ \bar{r}\left( F''_{11}+\frac{F''_{12}(2-2\omega ^2{\tau ^*}^2)+F''_{22}}{(1 +{\tau ^*}^2\omega ^2)^2}\right) ,&{}n=0.\end{array}\right. }\\ g_{02}&= {\left\{ \begin{array}{ll} 0,\quad n=1,2,\ldots ,&{}\\ \bar{r}\left( F''_{11}+\frac{2F''_{12}}{(1-i\omega \tau ^*)^2}+\frac{F''_{22}}{(1-i\omega \tau ^*)^4}\right) ,&{}n=0. \end{array}\right. }\\ g_{21}&= \frac{\bar{r}}{l\pi }\int _0^{l\pi }\left( F''_{11}(2W_{11}(0)+W_{20}(0)\right) \\&\quad +\,F''_{12}\left( 2\int _{-\infty }^0W_{11}(s)f(-s)\hbox {d}s\right. \\ \end{aligned}$$
$$\begin{aligned}&\quad \left. +\,\int _{-\infty }^0W_{20}(s)f(-s)\hbox {d}s+\frac{W_{20}(0)}{(1-i\omega \tau ^*)^2}\right. \\&\quad \left. +\,\frac{2W_{11}(0)}{(1+i\omega \tau ^*)^2}\right) \\&\quad +\,F''_{22}\left( \frac{\int _{-\infty }^0f(-s)W_{20}(s)\hbox {d}s}{(1-i\omega \tau ^*)^2}\right. \\&\quad \left. +\,\frac{2\int _{-\infty }^0 W_{11}(s)f(-s)\hbox {d}s}{(1+i\omega \tau ^*)^2}\right) \cos ^2{\frac{nx}{l}}\hbox {d}x\\&\quad +\,\frac{\bar{r}}{l\pi }\int _0^{l\pi }(F'''_{111}+F'''_{112}\left( \frac{1}{(1 -i\omega \tau ^*)^2}\right. \\&\quad \left. +\,\frac{2}{(1+i\omega \tau ^*)^2}\right) \\&\quad +\,F'''_{122}\left( \frac{2}{(1-i\omega \tau ^*)^2}+\frac{1}{(1+i\omega \tau ^*)^2}\right) \\&\quad +\,F'''_{222}\frac{1}{(1-i\omega \tau ^*)^2(1+i\omega \tau ^*)^4})\\&\times \cos ^4{\frac{nx}{l}}\hbox {d}x,~~n=0,1,2\ldots . \end{aligned}$$

Since \(W_{11}(\theta )\) and \(W_{20}(\theta )\) are included in \(g_{21}\), we will compute them.

By Wu [18], \(W(z,\bar{z})\) satisfies

$$\begin{aligned} \dot{W}=AW+H(z,\bar{z}), \end{aligned}$$
(24)

where

$$\begin{aligned}&AW=AW_{20}(\theta )\frac{z^2}{2}+AW_{11}(\theta )z\bar{z}\nonumber \\&\quad \qquad \qquad +\,AW_{02}(\theta ) \frac{\bar{z}^2}{2}+\ldots ,\nonumber \\&H(z,\bar{z})=-2Re\left( g(z,\bar{z})q(\theta )\right) \cos {\frac{nx}{l}}\nonumber \\&\quad \qquad \qquad +\,G\left( (zq(\theta )+\bar{z}\bar{q}(\theta ))\cos {\frac{nx}{l}}+W(\theta ),0\right) \nonumber \\&\quad \qquad \quad \triangleq H_{20}\frac{z^2}{2}+H_{11}z\bar{z}+H_{02}\frac{\bar{z}^2}{2}+\ldots . \end{aligned}$$
(25)

Comparing the coefficient, we obtain,

$$\begin{aligned} H_{20}(\theta )&= {\left\{ \begin{array}{ll} -\left( g_{20}q(\theta )+\overline{g_{02}}\bar{q}(\theta )\right) \cos {\frac{nx}{l}},&{}\theta \in (-\infty ,0),\\ -(g_{20}+\overline{g_{02}})\cos {\frac{nx}{l}}+\left( F''_{11} +\frac{2F''_{12}}{(1+i\omega \tau ^*)^2}+\frac{F''_{22}}{(1+i\omega \tau ^*)^4} \right) \cos ^2{\frac{nx}{l}},&{}\theta =0. \end{array}\right. }\\ H_{11}(\theta )&= {\left\{ \begin{array}{ll} -\left( g_{11}q(\theta )+\overline{g_{11}}\bar{q}(\theta )\right) \cos {\frac{nx}{l}},&{}\theta \in (-\infty ,0),\\ -(g_{11}+\overline{g_{11}})\cos {\frac{nx}{l}}+\left( F''_{11} +\frac{F''_{12}(2-2\omega ^2{\tau ^*}^2)+F''_{22}}{(1+{\tau ^*}^2\omega ^2)^2} \right) \cos ^2{\frac{nx}{l}},&{}\theta =0. \end{array}\right. } \end{aligned}$$

According to (21), (22), (24), (25), we have

$$\begin{aligned} (2i\omega -A)W_{20}(\theta )=H_{20}(\theta ),~~-AW_{11}(\theta )=H_{11}(\theta ). \end{aligned}$$
(26)

By the definition of \(A\) and (26), we can obtain

$$\begin{aligned} W_{20}(\theta )&= \left( \frac{g_{20}ie^{i\omega \theta }}{\omega } +\frac{\overline{g_{02}}ie^{-i\omega \theta }}{3\omega }\right) \cos {\frac{nx}{l}}\\&+E_1e^{2i\omega \theta },\\ W_{11}(\theta )&= \left( -\frac{ig_{11}e^{i\omega \theta }}{\omega } +\frac{\overline{g_{11}}ie^{-i\omega \theta }}{\omega }\right) \cos {\frac{nx}{l}}+E_2. \end{aligned}$$

Notice that, when \(\theta =0\), by (26) and \(Aq(0)=i\omega q(0)\) and \(A^*q^*(0)=-i\omega q^*(0)\), we have

$$\begin{aligned}&b\int _{-\infty }^0f(-s)e^{i\omega s}ds=\frac{\mathrm{d}n^2}{l^2}-a +i\omega ,\\&b\int _{-\infty }^0f(-s)e^{-i\omega s}\hbox {d}s =\frac{\mathrm{d}n^2}{l^2}-a-i\omega . \end{aligned}$$

Hence,

$$\begin{aligned}&\!\!\!\left( 2i\omega +\frac{\mathrm{d}n^2}{l^2}-a\right) E_1-b\int _{-\infty }^0f(-s)e^{2i\omega s}\hbox {d}s E_1\\&\!\!\!\quad =\left( F''_{11}+\frac{2F''_{12}}{(1+i\omega \tau ^*)^2}+\frac{F''_{22}}{(1+i\omega \tau ^*)^4}\right) \cos ^2{\frac{nx}{l}}, \end{aligned}$$

which leads to

$$\begin{aligned} E_1=\frac{F''_{11}+\frac{2F''_{12}}{(1+i\omega \tau ^*)^2}+\frac{F''_{22}}{(1+i \omega \tau ^*)^4}}{2i\omega +\frac{\mathrm{d}n^2}{l^2}-a-\frac{b}{(1+2i\omega \tau ^*)^2}}\cos ^2{\frac{nx}{l}}. \end{aligned}$$
(27)

By the same way, we have

$$\begin{aligned} E_2=\frac{F''_{11}+\frac{F''_{12}(2-2\omega ^2{\tau ^*}^2)+F''_{22}}{(1 +{\tau ^*}^2\omega ^2)^2}}{\frac{\mathrm{d}n^2}{l^2}-a-b}\cos ^2{\frac{nx}{l}}. \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Song, Y. Stability and bifurcation analysis of a reaction–diffusion equation with distributed delay. Nonlinear Dyn 79, 437–454 (2015). https://doi.org/10.1007/s11071-014-1677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1677-6

Keywords

Mathematics Subject Classification

Navigation