Skip to main content
Log in

Turning maneuver caused response in an aircraft rotor-ball bearing system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the nonlinear response caused by aircraft turning flight in a rotor-ball bearing system with internal clearances and Hertzian contact forces. The equations of motion are formulated by using Lagrange equation, where the aircraft turning flight is modeled as a maneuver load. Numerical analyses are carried out to detect the response of the system under maneuver load. The sub-harmonic resonance and irregular motions subjected to the maneuver load are obtained and presented by bifurcation diagrams, amplitude spectrum diagrams, Poincare maps and phase portraits. Two typical patterns that the maneuver load inducing response are found: one is the alternating of period 2 motion and period 1 motion for \(\omega =1{,}350\,\hbox {rad/s}\); the other is the alternating of quasi-periodic motion and period 2 motion for \(\omega =1{,}470\,\hbox {rad/s}\). Moreover, mass eccentricity shows a significant effect on the sub-harmonic resonance of the rotor-ball bearing system under turning flight, which is different from that without considering maneuvering flight condition (Bai and Zhang in Int J Nonlinear Mech 50:1–10, 2013). The results obtained in this paper will contribute an understanding of the nonlinear dynamic behaviors of aircraft rotor systems in maneuvering flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen, Y.S., Zhang, H.B.: Review and prospect on the research of dynamics of the aero-engine system. Acta Aeronautica et Astronautica Sinica 32, 1–22 (2011)

    Google Scholar 

  2. Liew, A., Feng, N., Hahn, E.J.: Transient rotor dynamic modeling of rolling element bearing systems. J. Eng. Gas Turbines Power 124, 984–991 (2002)

    Article  Google Scholar 

  3. Sinou, J.J.: Non-linear dynamics and contacts of an unbalanced flexible rotor supported on ball bearings. Mech. Mach. Theory 44, 1713–1732 (2009)

    Article  MATH  Google Scholar 

  4. Tomovic, R., Miltenovic, V., Banic, M., Miltenovic, A.: Vibration response of rigid rotor in unloaded rolling element bearing. Int. J. Mech. Sci. 52, 1176–1185 (2010)

    Article  Google Scholar 

  5. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Article  Google Scholar 

  6. Harsha, S.P.: Non-linear dynamic response of a balanced rotor supported on rolling element bearings. Mech. Syst. Signal Process. 19, 551–578 (2005)

    Article  Google Scholar 

  7. Harsha, S.P.: Nonlinear dynamic response of a balanced rotor supported by rolling element bearings due to radial internal clearance effect. Mech. Mach. Theory 41, 688–706 (2006)

    Article  MATH  Google Scholar 

  8. Bai, C., Xu, Q., Zhang, X.: Nonlinear stability of balanced rotor due to effect of ball bearing internal clearance. Appl. Math. Mech. Eng. 27(2), 175–186 (2006)

    Article  Google Scholar 

  9. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238(5), 757–779 (2000)

    Article  Google Scholar 

  10. Gupta, T.C., Gupta, K., Sehgal, D.K.: Nonlinear dynamics and chaos of an unbalanced flexible rotor supported by deep groove ball bearings with radial internal clearance. In: IUTAM Symp. Emerg. Trends Rotor Dyn., pp. 322–333 (2011)

  11. Lioulios, A.N., Antoniadis, I.A.: Effect of rotational speed fluctuations on the dynamic behaviour of rolling element bearings with radial clearances. Int. J. Mech. Sci. 48, 809–829 (2006)

    Article  Google Scholar 

  12. Harsha, S.P., Sandeep, K., Prakash, R.: Nonlinear dynamic response of a rotor bearing system due to surface waviness. Nonlinear Dyn. 37, 91–114 (2004)

    Article  MATH  Google Scholar 

  13. Kankar, P.K., Sharma, S.C.: Vibration based performance prediction of ball bearings caused by localized defects. Nonlinear Dyn. 69, 847–875 (2012)

    Article  MathSciNet  Google Scholar 

  14. Harsha, S.P., Kankar, P.K.: Stability analysis of a rotor bearing system due to surface waviness and number of balls. Int. J. Mech. Sci. 46, 1057–1081 (2004)

    Article  MATH  Google Scholar 

  15. Changqing, B., Qingyu, X.: Dynamic model of ball bearings with internal clearance and waviness. J. Sound Vib. 294, 23–48 (2006)

    Article  Google Scholar 

  16. Jang, G., Jeong, S.-W.: Vibration analysis of a rotating system due to the effect of ball bearing waviness. J. Sound Vib. 269, 709–726 (2004)

    Article  Google Scholar 

  17. Han, D.C., Choi, S.H., Lee, Y.H., Kim, K.H.: The nonlinear and ball pass effects of a ball bearing on rotor vibration. KSME Int. J. 12(3), 396–404 (1998)

    Google Scholar 

  18. Lee, Y.S., Lee, C.W.: Modelling and vibration analysis of misaligned rotor-ball bearing systems. J. Sound Vib. 224(1), 17–22 (1999)

    Article  Google Scholar 

  19. Harsha, S.P., Sandeep, K., Prakash, R.: The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. Int. J. Mech. Sci. 45, 725–740 (2003)

    Article  Google Scholar 

  20. Kim, Y.B., Noah, S.T.: Bifurcation analysis for a modified jeffcott rotor with bearing clearances. Nonlinear Dyn. 1, 221–241 (1990)

    Article  Google Scholar 

  21. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190(2), 239–253 (1996)

    Article  Google Scholar 

  22. Villa, C., Sinou, J.J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13, 804–821 (2008)

  23. Xu, L., Li, Y.: An approach for calculating the dynamic load of deep groove ball bearing joints in planar multibody systems. Nonlinear Dyn. 70, 2145–2161 (2012)

    Article  Google Scholar 

  24. Young, T.H., Shiau, T.N., Kuo, Z.H.: Dynamic stability of rotor-bearing systems subjected to random axial forces. J. Sound Vib. 305, 467–480 (2007)

    Article  Google Scholar 

  25. Bai, C., Zhang, H.: Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. Nonlinear Dyn. 53, 173–190 (2008)

    Article  MATH  Google Scholar 

  26. Zhou, H., Luo, G., Chen, G., Wang, F.: Analysis of the nonlinear dynamic response of a rotor supported on ball bearings with floating-ring squeeze film dampers. Mech. Mach. Theory 59, 65–77 (2013)

    Article  Google Scholar 

  27. Leblanc, A., Nelias, D., Defaye, C.: Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings. J. Sound Vib. 325, 145–160 (2009)

    Article  Google Scholar 

  28. Nataraj, C., Harsha, S.P.: The effect of bearing cage run-out on the nonlinear dynamics of a rotating shaft. Commun. Nonlinear Sci. Numer. Simul. 13, 822–838 (2008)

    Article  Google Scholar 

  29. Bai, C., Zhang, H.: Subharmonic resonance of a symmetric ball bearing-rotor system. Int. J. Nonlinear Mech. 50, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  30. Lin, F.S., Meng, G., Eric, H.: Nonlinear dynamics of a cracked rotor in a maneuvering aircraft. Appl. Math. Mech. Eng. 25, 1139–1150 (2004)

    Article  MATH  Google Scholar 

  31. Yang, Y.F., Ren, X.M., Qin, W.Y., Wu, Y.F., Zhi, X.Z.: Analysis on the nonlinear response of cracked rotor in hover flight. Nonlinear Dyn. 61, 183–192 (2010)

    Article  MATH  Google Scholar 

  32. Hou, L., Chen, Y.S., Cao, Q.J.: Nonlinear vibration phenomenon of an aircraft rub-impact rotor system due to hovering flight. Commun. Nonlinear Sci. Numer. Simul. 19, 286–297 (2014)

    Article  MathSciNet  Google Scholar 

  33. Liew, A., Feng, N., Hahn, E.J.: Transient rotordynamic modeling of rolling element bearing systems. J. Eng. Gas Turbines Power 124, 984–991 (2002)

    Article  Google Scholar 

  34. Zhu, C.S., Chen, Y.J.: General dynamic model of aero-engine’s rotor system during maneuvering flight. J. Aerosp. Power 24, 371–377 (2009)

    Google Scholar 

  35. Gao, J., Zhu, P.S., Gao, Z.H.: Advanced Flight Dynamics. National Defence Industry Press, Beijing (2007)

    Google Scholar 

  36. Mevel, B., Guyader, J.L.: Experiments on routes to chaos in ball bearings. J. Sound Vib. 318, 549–564 (2008)

    Article  Google Scholar 

  37. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Dynamics. Springer, New York (1992)

    Book  Google Scholar 

  38. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218 (2006)

    Article  MathSciNet  Google Scholar 

  39. Cao, Q., Xiong, Y., Wiercigroch, M.: Resonances of the SD oscillator due to the discontinuous phase. J. Appl. Anal. Comput. 1, 183–191 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports from the Natural Science Foundation of China (Grant Nos. 10632040 and 11072065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Chen, Y., Cao, Q. et al. Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dyn 79, 229–240 (2015). https://doi.org/10.1007/s11071-014-1659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1659-8

Keywords

Navigation