Skip to main content
Log in

Stationary response of nonlinear system with Caputo-type fractional derivative damping under Gaussian white noise excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aimed to investigate the response of single-degree-of-freedom system with Caputo-type fractional derivative damping term under Gaussian white noise excitation. First, the approximately analytical solution of the system is obtained using the stochastic averaging method. Then, an effective algorithm for the solution of initial value problems with Caputo derivative is briefly introduced. At last, in order to certify the validity of the analytical solution, two examples are worked out in detail. A very satisfactory agreement is found between the analytical results and the Monte Carlo simulation of original systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gaul, L.: The influence of damping on waves and vibrations. Mech. Syst. Signal Process. 13(1), 1–30 (1999)

    Article  Google Scholar 

  2. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284(1), 521–541 (2002)

    Article  MathSciNet  Google Scholar 

  3. Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time Depend. Mater. 9(1), 15–34 (2005)

    Article  Google Scholar 

  4. Magin, R.L., Abdullah, O., Baleanu, D., Zhou, X.J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190(2), 255–270 (2008)

    Article  Google Scholar 

  5. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Limited, New York (2006)

  6. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

  7. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, Waltham (1998)

  8. Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56(3), 897–904 (1974)

    Article  MATH  Google Scholar 

  9. Bagley, R.L., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983) (1978–present)

  10. Bagley, R.L., TORVIK, J.: Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

  11. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  12. Sabatier, J., Agrawal, O.P., Machado, J.T.: Advances in Fractional Calculus. Springer, New York (2007)

    Book  MATH  Google Scholar 

  13. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Method. Appl. Mech. Eng. 194(6), 743–773 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Trigeassou, J.-C., Maamri, N.: Initial conditions and initialization of linear fractional differential equations. Sig. Process. 91(3), 427–436 (2011)

    Article  MATH  Google Scholar 

  16. Sabatier, J., Farges, C., Trigeassou, J.-C.: A stability test for non-commensurate fractional order systems. Syst. Control. Lett. 62(9), 739–746 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Trigeassou, J., Maamri, N., Oustaloup, A.: The infinite state approach: origin and necessity. Comput. Math. Appl. 66(5), 892–907 (2013)

    Article  MathSciNet  Google Scholar 

  18. Trigeassou, J.-C., Maamri, N., Oustaloup, A.: Automatic initialization of the Caputo fractional derivative. In: Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on 2011, pp. 3362–3368. IEEE.

  19. Zhu, W.: Random vibration. Science, Beijing (1992)

  20. Huang, Z., Jin, X.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319(3), 1121–1135 (2009)

    Article  Google Scholar 

  21. Spanos, P., Zeldin, B.: Random vibration of systems with frequency-dependent parameters or fractional derivatives. J. Eng. Mech. 123(3), 290–292 (1997)

    Article  Google Scholar 

  22. Kun, Y., Li, L., Jiaxiang, T.: Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative. Earthq. Eng. Eng. Vib. 2(1), 133–139 (2003)

    Article  Google Scholar 

  23. Agrawal, O.P.: Analytical solution for stochastic response of a fractionally damped beam. J. Vib. Acoust. 126(4), 561–566 (2004)

    Article  Google Scholar 

  24. Shen, Y., Yang, S., Xing, H., Gao, G.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

  25. Chen, L., Zhu, W.: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Non-Linear Mech. 46(10), 1324–1329 (2011)

    Article  Google Scholar 

  26. Chen, L., Zhu, W.: First passage failure of SDOF nonlinear oscillator with lightly fractional derivative damping under real noise excitations. Probab. Eng. Mech. 26(2), 208–214 (2011)

    Article  Google Scholar 

  27. Chen, L., Zhu, W.: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations. Acta Mech. 207(1–2), 109–120 (2009)

    Article  MATH  Google Scholar 

  28. Xu, Y., Li, Y., Liu, D., Jia, W., Huang, H.: Responses of Duffing oscillator with fractional damping and random phase. Nonlinear Dynam 74(3), 745–753 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Xu, Y., Li, Y., Liu, D.: Response of fractional oscillators with viscoelastic term under random excitation. J. Comput. Nonlinear Dyn. 9(3), 031015 (2014). doi:10.1115/1.4026068

    Article  MathSciNet  Google Scholar 

  30. Caputo, M.: Elasticità e dissipazione. Zanichelli (1969)

  31. Zhu, W., Huang, Z., Suzuki, Y.: Response and stability of strongly non-linear oscillators under wide-band random excitation. Int. J. Non-Linear Mech. 36(8), 1235–1250 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Khasminskii, R.: On the principle of averaging for the Itô stochastic differential equations. Kybernetika (Czechoslovakia) 4, 260–279 (1968)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF of China (Grant Nos. 11172233, 11302171, 11302170, and 11302169), the Fundamental Research Funds for the Central Universities (No. 3102014JCQ0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, W., Jia, W. et al. Stationary response of nonlinear system with Caputo-type fractional derivative damping under Gaussian white noise excitation. Nonlinear Dyn 79, 139–146 (2015). https://doi.org/10.1007/s11071-014-1651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1651-3

Keywords

Navigation